滁州市七年級數(shù)學下冊期末壓軸題考試試題_第1頁
滁州市七年級數(shù)學下冊期末壓軸題考試試題_第2頁
滁州市七年級數(shù)學下冊期末壓軸題考試試題_第3頁
滁州市七年級數(shù)學下冊期末壓軸題考試試題_第4頁
滁州市七年級數(shù)學下冊期末壓軸題考試試題_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

一、解答題1.在如圖所示的平面直角坐標系中,A(1,3),B(3,1),將線段A平移至CD,C(m,-1),D(1,n)(1)m=_____,n=______(2)點P的坐標是(c,0)①設(shè)∠ABP=,請寫出∠BPD和∠PDC之間的數(shù)量關(guān)系(用含的式子表示,若有多種數(shù)量關(guān)系,選擇一種加以說明)②當三角形PAB的面積不小于3且不大于10,求點p的橫坐標C的取值范圍(直接寫出答案即可)2.已知AB∥CD,線段EF分別與AB,CD相交于點E,F(xiàn).(1)請在橫線上填上合適的內(nèi)容,完成下面的解答:如圖1,當點P在線段EF上時,已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當點P,Q在線段EF上移動時(不包括E,F(xiàn)兩點):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請直接寫出∠M,∠A與∠C的數(shù)量關(guān)系.3.如圖,已知直線射線CD,.P是射線EB上一動點,過點P作PQEC交射線CD于點Q,連接CP.作,交直線AB于點F,CG平分.(1)若點P,F(xiàn),G都在點E的右側(cè),求的度數(shù);(2)若點P,F(xiàn),G都在點E的右側(cè),,求的度數(shù);(3)在點P的運動過程中,是否存在這樣的情形,使?若存在,求出的度數(shù);若不存在,請說明理由.4.閱讀下面材料:小亮同學遇到這樣一個問題:已知:如圖甲,ABCD,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請你幫他把證明過程補充完整.證明:過點E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點A,B在直線a上,點C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點E.①如圖1,當點B在點A的左側(cè)時,若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當點B在點A的右側(cè)時,設(shè)∠ABC=α,∠ADC=β,請你求出∠BED的度數(shù)(用含有α,β的式子表示).5.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.6.如圖1,已知直線m∥n,AB是一個平面鏡,光線從直線m上的點O射出,在平面鏡AB上經(jīng)點P反射后,到達直線n上的點Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點O以適當?shù)慕嵌壬涑龊?,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說明理由.7.定義:對任意一個兩位數(shù),如果滿足個位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個兩位數(shù)為“奇異數(shù)”.將一個“奇異數(shù)”的個位數(shù)字與十位數(shù)字對調(diào)后得到一個新的兩位數(shù),把這個新兩位數(shù)與原兩位數(shù)的和與的商記為例如:,對調(diào)個位數(shù)字與十位數(shù)字后得到新兩位數(shù)是,新兩位數(shù)與原兩位數(shù)的和為,和與的商為,所以根據(jù)以上定義,完成下列問題:(1)填空:①下列兩位數(shù):,,中,“奇異數(shù)”有.②計算:..(2)如果一個“奇異數(shù)”的十位數(shù)字是,個位數(shù)字是,且請求出這個“奇異數(shù)”(3)如果一個“奇異數(shù)”的十位數(shù)字是,個位數(shù)字是,且滿足,請直接寫出滿足條件的的值.8.先閱讀然后解答提出的問題:設(shè)a、b是有理數(shù),且滿足,求ba的值.解:由題意得,因為a、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問題:設(shè)x、y都是有理數(shù),且滿足,求x+y的值.9.閱讀下面的文字,解答問題大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用﹣1來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:<<,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為(﹣2)請解答:(1)整數(shù)部分是,小數(shù)部分是.(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整數(shù),且0<y<1,求x﹣y的相反數(shù).10.觀察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根據(jù)以上規(guī)律,則(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此歸納出一般性規(guī)律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根據(jù)以上規(guī)律求1+3+32+…+349+350的結(jié)果.11.數(shù)學中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的運算,記為,如,則,則.①根據(jù)定義,填空:_________,__________.②若有如下運算性質(zhì):.根據(jù)運算性質(zhì)填空,填空:若,則__________;___________;③下表中與數(shù)x對應(yīng)的有且只有兩個是錯誤的,請直接找出錯誤并改正.x1.5356891227錯誤的式子是__________,_____________;分別改為__________,_____________.12.若一個四位數(shù)t的前兩位數(shù)字相同且各位數(shù)字均不為0,則稱這個數(shù)為“前介數(shù)”;若把這個數(shù)的個位數(shù)字放到前三位數(shù)字組成的數(shù)的前面組成一個新的四位數(shù),則稱這個新的四位數(shù)為“中介數(shù)”;記一個“前介數(shù)”t與它的“中介數(shù)”的差為P(t).例如,5536前兩位數(shù)字相同,所以5536為“前介數(shù)”;則6553就為它的“中介數(shù)”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個“前介數(shù)”t,P(t)一定能被9整除.(3)若一個千位數(shù)字為2的“前介數(shù)”t能被6整除,它的“中介數(shù)”能被2整除,請求出滿足條件的P(t)的最大值.13.如圖,在平面直角坐標系中,已知,,,,滿足.平移線段得到線段,使點與點對應(yīng),點與點對應(yīng),連接,.(1)求,的值,并直接寫出點的坐標;(2)點在射線(不與點,重合)上,連接,.①若三角形的面積是三角形的面積的2倍,求點的坐標;②設(shè),,.求,,滿足的關(guān)系式.14.如圖1,點在直線上,點在直線上,點在,之間,且滿足.(1)證明:;(2)如圖2,若,,點在線段上,連接,且,試判斷與的數(shù)量關(guān)系,并說明理由;(3)如圖3,若(為大于等于的整數(shù)),點在線段上,連接,若,則______.15.在平面直角坐標系中,點坐標為,點坐標為,過點作直線軸,垂足為,交線段于點.(1)如圖1,過點作,垂足為,連接.①填空:的面積為______;②點為直線上一動點,當時,求點的坐標;(2)如圖2,點為線段延長線上一點,連接,,線段交于點,若,請直接寫出點的坐標為______.16.學校準備購進一批籃球和足球,已知2個籃球和6個足球共需480元;3個籃球和4個足球共需470元.(1)求一個籃球和一個足球的售價各是多少元;(2)學校準備購進兩種球共50個,并且籃球的數(shù)量不少于足球數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并說明理由.17.如圖,點A(1,n),B(n,1),我們定義:將點A向下平移1個單位,再向右平移1個單位,同時點B向上平移1個單位,再向左平移1個單位稱為一次操作,此時平移后的兩點記為A1,B1,t次操作后兩點記為At,Bt.(1)直接寫出A1,B1,At,Bt的坐標(用含n、t的式子表示);(2)以下判斷正確的是.A.經(jīng)過n次操作,點A,點B位置互換B.經(jīng)過(n﹣1)次操作,點A,點B位置互換C.經(jīng)過2n次操作,點A,點B位置互換D.不管幾次操作,點A,點B位置都不可能互換(3)t為何值時,At,B兩點位置距離最近?18.在平面直角坐標系中,為坐標原點.已知兩點,且、滿足;若四邊形為平行四邊形,且,點在軸上.(1)如圖①,動點從點出發(fā),以每秒個單位長度沿軸向下運動,當時間為何值時,三角形的面積等于平行四邊形面積的四分之一;(2)如圖②,當從點出發(fā),沿軸向上運動,連接、,、、存在什么樣的數(shù)量關(guān)系,請說明理由(排除在和兩點的特殊情況).19.歷史上的數(shù)學巨人歐拉最先把關(guān)于x的多項式用記號f(x)來表示.例如f(x)=x2+3x-5,把x=某數(shù)時多項式的值用f(某數(shù))來表示.例如x=-1時多項式x2+3x-5的值記為f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x2-3x+1,分別求出g(-1)和g(-2);(2)已知h(x)=ax3+2x2-ax-6,當h()=a,求a的值;(3)已知f(x)=--2(a,b為常數(shù)),當k無論為何值,總有f(1)=0,求a,b的值.20.如圖,已知,,且滿足.(1)求、兩點的坐標;(2)點在線段上,、滿足,點在軸負半軸上,連交軸的負半軸于點,且,求點的坐標;(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點,過作軸于,若,且,求點的坐標.21.已知AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.(1)如圖1,過點B作BD⊥AM于點D,∠BAD與∠C有何數(shù)量關(guān)系,并說明理由;(2)如圖2,在(1)問的條件下,點E,F(xiàn)在DM上,連接BE,BF,CF,若BF平分∠DBC,BE平分∠ABD,∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠ABE的度數(shù).22.一個四位正整數(shù),若其千位上與百位上的數(shù)字之和等于十位上與個位上的數(shù)字之和,都等于k,那么稱這個四位正整數(shù)為“k類誠勤數(shù)”,例如:2534,因為,所以2534是“7類誠勤數(shù)”.(1)請判斷7441和5436是否為“誠勤數(shù)”并說明理由;(2)若一個四位正整數(shù)A為“5類誠勤數(shù)”且能被13整除,請求出的所有可能取值.23.對于實數(shù)x,若,則符合條件的中最大的正數(shù)為的內(nèi)數(shù),例如:8的內(nèi)數(shù)是5;7的內(nèi)數(shù)是4.(1)1的內(nèi)數(shù)是______,20的內(nèi)數(shù)是______,6的內(nèi)數(shù)是______;(2)若3是x的內(nèi)數(shù),求x的取值范圍;(3)一動點從原點出發(fā),以3個單位/秒的速度按如圖1所示的方向前進,經(jīng)過秒后,動點經(jīng)過的格點(橫,縱坐標均為整數(shù)的點)中能圍成的最大實心正方形的格點數(shù)(包括正方形邊界與內(nèi)部的格點)為,例如當時,,如圖2①……;當時,,如圖2②,③;……①用表示的內(nèi)數(shù);②當?shù)膬?nèi)數(shù)為9時,符合條件的最大實心正方形有多少個,在這些實心正方形的格點中,直接寫出離原點最遠的格點的坐標.(若有多點并列最遠,全部寫出)24.在平面直角坐標系xOy中.點A,B,P不在同一條直線上.對于點P和線段AB給出如下定義:過點P向線段AB所在直線作垂線,若垂足Q落在線段AB上,則稱點P為線段AB的內(nèi)垂點.若垂足Q滿足|AQ-BQ|最小,則稱點P為線段AB的最佳內(nèi)垂點.已知點A(﹣2,1),B(1,1),C(﹣4,3).(1)在點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點為;(2)點M是線段AB的最佳內(nèi)垂點且到線段AB的距離是2,則點M的坐標為;(3)點N在y軸上且為線段AC的內(nèi)垂點,則點N的縱坐標n的取值范圍是;(4)已知點D(m,0),E(m+4,0),F(xiàn)(2m,3).若線段CF上存在線段DE的最佳內(nèi)垂點,求m的取值范圍.25.某加工廠用52500元購進A、B兩種原料共40噸,其中原料A每噸1500元,原料B每噸1000元.由于原料容易變質(zhì),該加工廠需盡快將這批原料運往有保質(zhì)條件的倉庫儲存.經(jīng)市場調(diào)查獲得以下信息:①將原料運往倉庫有公路運輸與鐵路運輸兩種方式可供選擇,其中公路全程120千米,鐵路全程150千米;②兩種運輸方式的運輸單價不同(單價:每噸每千米所收的運輸費);③公路運輸時,每噸每千米還需加收1元的燃油附加費;④運輸還需支付原料裝卸費:公路運輸時,每噸裝卸費100元;鐵路運輸時,每噸裝卸費220元.(1)加工廠購進A、B兩種原料各多少噸?(2)由于每種運輸方式的運輸能力有限,都無法單獨承擔這批原料的運輸任務(wù).加工廠為了盡快將這批原料運往倉庫,決定將A原料選一種方式運輸,B原料用另一種方式運輸,哪種方案運輸總花費較少?請說明理由.26.如圖,數(shù)軸上兩點A、B對應(yīng)的數(shù)分別是-1,1,點P是線段AB上一動點,給出如下定義:如果在數(shù)軸上存在動點Q,滿足|PQ|=2,那么我們把這樣的點Q表示的數(shù)稱為連動數(shù),特別地,當點Q表示的數(shù)是整數(shù)時我們稱為連動整數(shù).(1)在-2.5,0,2,3.5四個數(shù)中,連動數(shù)有;(直接寫出結(jié)果)(2)若k使得方程組中的x,y均為連動數(shù),求k所有可能的取值;(3)若關(guān)于x的不等式組的解集中恰好有4個連動整數(shù),求這4個連動整數(shù)的值及a的取值范圍.27.某地葡萄豐收,準備將已經(jīng)采摘下來的11400公斤葡萄運送杭州,現(xiàn)有甲、乙、丙三種車型共選擇,每輛車運載能力和運費如表表示(假設(shè)每輛車均滿載)車型甲乙丙汽車運載量(公斤/輛)600800900汽車運費(元/輛)500600700(1)若全部葡萄都用甲、乙兩種車型來運,需運費8700元,則需甲、乙兩種車型各幾輛?(2)為了節(jié)省運費,現(xiàn)打算用甲、乙、丙三種車型都參與運送,已知它們的總輛數(shù)為15輛,你能分別求出這三種車型的輛數(shù)嗎?怎樣安排運費最?。?8.如圖,已知,,且滿足.(1)求、兩點的坐標;(2)點在線段上,、滿足,點在軸負半軸上,連交軸的負半軸于點,且,求點的坐標;(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點,過作軸于,若,且,求點的坐標.29.對,定義一種新的運算,規(guī)定:(其中).(1)若已知,,則_________.(2)已知,.求,的值;(3)在(2)問的基礎(chǔ)上,若關(guān)于正數(shù)的不等式組恰好有2個整數(shù)解,求的取值范圍.30.學校美術(shù)組要去商店購買鉛筆和橡皮,若購買60支鉛筆和30塊橡皮,則需按零售價購買,共支付30元;若購買90支鉛筆和60塊橡皮,則可按批發(fā)價購買,共支付40.5元.已知每支鉛筆的批發(fā)價比零售價低0.05元,每塊橡皮的批發(fā)價比零售價低0.10元.(1)求每支鉛筆和每塊橡皮的批發(fā)價各是多少元?(2)小亮同學用4元錢在這家商店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),共有哪幾種購買方案?【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)-1,-3.(2)①當點P在直線AB,CD之間時,∠BPD-∠PDC=α.當點P在直線CD的下方時,∠BPD+∠PDC=α.當點P在直線AB的上方時,∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由題意,線段AB向左平移2個單位,向下平移4個單位得到線段CD,利用平移規(guī)律求解即可.(2)①分三種情形求解,如圖1中,當點P在直線AB,CD之間時,∠BPD-∠PDC=α.如圖2中,當點P在直線CD的下方時,∠BPD+∠PDC=α.如圖3中,當點P在直線AB的上方時,同法可證∠BPD+∠PDC=α.分別利用平行線的性質(zhì)求解即可.②求出點P在直線AB兩側(cè),△PAB的面積分別為3和10時,m的值,即可判斷.【詳解】解:(1)由題意,線段AB向左平移2個單位,向下平移4個單位得到線段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案為:-1,-3.(2)如圖1中,當點P在直線AB,CD之間時,∠BPD-∠PDC=α.理由:過點P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD-∠PDC=∠BPD-∠DPE=∠BPE=α.如圖2中,當點P在直線CD的下方時,∠BPD+∠PDC=α.理由:過點P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD+∠PDC=∠BPD+∠DPE=∠BPE=α.如圖3中,當點P在直線AB的上方時,同法可證∠BPD+∠PDC=α.(3)如圖4中,過點B作BH⊥x軸于H,過點A作AT⊥BH交BH于點T,延長AB交x軸于E.當點P在直線AB的下方時,S△PAB=S梯形ATHP-S△ABT-S△PBH=(2+3-m)?3-×2×2-?(3-m)?1=-m+4,當△PAB的面積=3時,-m+4=3,解得m=1,當△PAB的面積=3時,-m+4=10,解得m=-6,∵△ABT是等腰直角三角形,∴∠ABT=45°=∠HBE,∴BH=EH=1,∴E(4,0),根據(jù)對稱性可知,當點P在直線AB的右側(cè)時,當△PAB的面積=3時,m=7,當△PAB的面積=3時,m=14,觀察圖象可知,-6<m≤1或7≤m<14.【點睛】本題屬于三角形綜合題,考查了三角形的面積,平行線的判定和性質(zhì)等知識,解題的關(guān)鍵是學會利用分割法求三角形面積,學會尋找特殊位置解決問題,屬于中考??碱}型.2.(1)兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質(zhì)即可完成填空;(2)結(jié)合(1)的輔助線方法即可完成證明;(3)結(jié)合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關(guān)系.【詳解】解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內(nèi)錯角相等;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點睛】考核知識點:平行線的判定和性質(zhì).熟練運用平行線性質(zhì)和判定,添加適當輔助線是關(guān)鍵.3.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當點G、F在點E的右側(cè)時,②當點G、F在點E的左側(cè)時,依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當點G、F在點E的右側(cè)時,則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當點G、F在點E的左側(cè)時,則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點睛】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.4.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側(cè)時,根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數(shù);②如圖2,過點E作EF∥AB,當點B在點A的右側(cè)時,∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過點E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過點E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).5.(1)PB′⊥QC′;(2)當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進而得結(jié)論;(2)分三種情況:①當0<t≤15時,②當15<t≤30時,③當30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運用方程思想解決幾何問題.6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問題的設(shè)置環(huán)環(huán)相扣、前為后用的設(shè)置目的.7.(1)①,②,;(2);(3)【分析】(1)①由“奇異數(shù)”的定義可得;②根據(jù)定義計算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根據(jù)題意可列出等式,可求出x、y的值,即可求的值.【詳解】解:(1)①∵對任意一個兩位數(shù)a,如果a滿足個位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個兩位數(shù)為“奇異數(shù)”.∴“奇異數(shù)”為21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根據(jù)題意有∵∴∴∵x、y為正數(shù),且x≠y∴x=6,y=5∴a=6×10+5=65故答案為:(1)①,②,;(2);(3)【點睛】本題考查了新定義下的實數(shù)運算,能理解“奇異數(shù)”定義是本題的關(guān)鍵.8.7或-1.【分析】根據(jù)題目中給出的方法,對所求式子進行變形,求出x、y的值,進而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當x=4時,x+y=4+3=7當x=-4時,x+y=-4+3=-1∴x+y的值是7或-1.【點睛】本題考查實數(shù)的運算,解題的關(guān)鍵是弄清題中給出的解答方法,然后運用類比的思想進行解答.9.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范圍,即可得出答案;(2)分別確定出a、b的值,代入原式計算即可求出值;(3)根據(jù)題意確定出等式左邊的整數(shù)部分得出y的值,進而求出y的值,即可求出所求.【詳解】解:(1)∵7﹤﹤8,∴的整數(shù)部分是7,小數(shù)部分是-7.故答案為:7;-7.(2)∵3﹤﹤4,∴,∵2﹤﹤3,∴b=2∴|a-b|+=|-3-2|+=5-+=5(3)∵2﹤﹤3∴11<9+<12,∵9+=x+y,其中x是整數(shù),且0﹤y<1,∴x=11,y=-11+9+=-2,∴x-y=11-(-2)=13-【點睛】本題考查的是無理數(shù)的小數(shù)部分和整數(shù)部分及其運算.估算無理數(shù)的整數(shù)部分是解題關(guān)鍵.10.(1)x7-1;(2)xn+1-1;(3).【分析】(1)仿照已知等式寫出答案即可;(2)先歸納總結(jié)出規(guī)律,然后按規(guī)律解答即可;(3)先利用得出規(guī)律的變形,然后利用規(guī)律解答即可.【詳解】解:(1)根據(jù)題意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根據(jù)題意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=×(3-1)(1+3+32+···+349+350)=×(x50+1-1)=故答案為:(1)x7-1;(2)xn+1-1;(3).【點睛】本題考查了平方差公式以及規(guī)律型問題,弄清題意、發(fā)現(xiàn)數(shù)字的變化規(guī)律是解答本題的關(guān)鍵.11.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根據(jù)定義可得:f(10b)=b,即可求得結(jié)論;②根據(jù)運算性質(zhì):f(mn)=f(m)+f(n),f()=f(n)-f(m)進行計算;③通過9=32,27=33,可以判斷f(3)是否正確,同樣依據(jù)5=,假設(shè)f(5)正確,可以求得f(2)的值,即可通過f(8),f(12)作出判斷.【詳解】解:①根據(jù)定義知:f(10b)=b,∴f(10)=1,f(103)=3.故答案為:1,3.②根據(jù)運算性質(zhì),得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990.故答案為:0.6020;0.6990.③若f(3)≠2a-b,則f(9)=2f(3)≠4a-2b,f(27)=3f(3)≠6a-3b,從而表中有三個對應(yīng)的f(x)是錯誤的,與題設(shè)矛盾,∴f(3)=2a-b;若f(5)≠a+c,則f(2)=1-f(5)≠1-a-c,∴f(8)=3f(2)≠3-3a-3c,f(6)=f(3)+f(2)≠1+a-b-c,表中也有三個對應(yīng)的f(x)是錯誤的,與題設(shè)矛盾,∴f(5)=a+c,∴表中只有f(1.5)和f(12)的對應(yīng)值是錯誤的,應(yīng)改正為:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c.∵9=32,27=33,∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b.【點睛】本題考查了冪的應(yīng)用,新定義運算等,解題的關(guān)鍵是深刻理解所給出的定義或規(guī)則,將它們轉(zhuǎn)化為我們所熟悉的運算.12.(1)-3006,990;(2)見解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據(jù)“前介數(shù)”t與它的“中介數(shù)”的差為P(t)的定義求解即可;(2)設(shè)“前介數(shù)”為且a、b、c均不為0的整數(shù),即1a、b、c,根據(jù)定義得到P(t)=,則P(t)一定能被9整除;(3)設(shè)“前介數(shù)”為,根據(jù)題意得到能被3整除,且b只能取2,4,6,8中的其中一個數(shù);對應(yīng)的“中介數(shù)”是,得到a只能取2,4,6,8中的其中一個數(shù),計算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數(shù)”,其對應(yīng)的“中介數(shù)”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數(shù)”,其對應(yīng)的“中介數(shù)”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設(shè)“前介數(shù)”為且a、b、c均為不為0的整數(shù),即1a、b、c,∴,又對應(yīng)的“中介數(shù)”是,∴P(t)=,∵a、b、c均不為0的整數(shù),∴為整數(shù),∴P(t)一定能被9整除;(3)證明:設(shè)“前介數(shù)”為且即1a、b,a、b均為不為0的整數(shù),∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數(shù),且能被3整除,又1,∴b只能取2,4,6,8中的其中一個數(shù),又對應(yīng)的“中介數(shù)”是,且該“中介數(shù)”能被2整除,∴為偶數(shù),又1,∴a只能取2,4,6,8中的其中一個數(shù),∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時,且14不能被3整除,不符合題意,舍去;②的最大值為6,的最小值仍為2,但此時,能被3整除,且P(t)=2262-2226=36;③的最大值仍為8,的最小值為4,但此時,且16不能被3整除,不符合題意,舍去;其他情況,減少,增大,則P(t)減少,∴滿足條件的P(t)的最大值是P(2262)=36.【點睛】本題考查用新定義解題,根據(jù)新定義,表示出“前介數(shù)”,與其對應(yīng)的“中介數(shù)”是求解本題的關(guān)鍵.本題中運用到的分類討論思想是重要一種數(shù)學解題思想方法.13.(1);(2)①或;②點在B點左側(cè)時,;點在B點右側(cè)時,.【分析】(1)根據(jù)非負數(shù)的性質(zhì)分別求出、,根據(jù)平移規(guī)律得到平移方式,再由平移的坐標變化規(guī)律求出點的坐標;(2)①設(shè),根據(jù)三角形的面積公式列出方程,解方程求出,得到點P的坐標;②分點點在B點左側(cè)、點在B點右側(cè)時,過點P作,根據(jù)平行線的性質(zhì)解答.【詳解】解:(1),,,,解得,,.,,平移線段得到線段,使點與點對應(yīng),∴平移線段向上平移4個單位,再向右平移2個單位得到線段,∴,即;(2)①設(shè),∵線段平移得到線段,∴,∵,∵,∴,∵,∴解得,當P在B點左側(cè)時,坐標為(1,0),當P在B點右側(cè)時,坐標為(7,0),或;②I、點在射線(不與點,重合)上,點在B點左側(cè)時,,,滿足的關(guān)系式是.理由如下:如圖1,過點作,,∴,由平移得到,點與點對應(yīng),點與點對應(yīng),,∴∴,;即,II、如圖2,點在射線(不與點,重合)上,點在B點右側(cè)時,,,滿足的關(guān)系式是.同①的方法得,,,;即:綜上所述:點在B點左側(cè)時,.點在B點右側(cè)時,.【點睛】本題考查了坐標與圖形平移的關(guān)系,坐標與平行四邊形性質(zhì)的關(guān)系,平行線的性質(zhì)及三角形、平行四邊形的面積公式.關(guān)鍵是理解平移規(guī)律,作平行線將相關(guān)角進行轉(zhuǎn)化.14.(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設(shè)∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)AD∥BC,得到∠DAC=120°,求出∠CAE即可得到結(jié)論;(3)作CF∥ST,設(shè)∠CBT=β,得到∠CBT=∠BCF=β,分別表示出∠CAN和∠CAE,即可得到比值.【詳解】解:(1)如圖,連接,,,,,(2),理由:作,則如圖,設(shè),則.,,,,.即.(3)作,則如圖,設(shè),則.,,,,,故答案為.【點睛】本題主要考查平行線的性質(zhì)和判定,解題關(guān)鍵是角度的靈活轉(zhuǎn)換,構(gòu)建數(shù)量關(guān)系式.15.(1)①6;②的坐標為,;(2).【解析】【分析】(1)①易證四邊形AECO為矩形,則點B到AE的距離為OA,AE=OC=3,OA=CE=4,S△ABE=AE?OA,即可得出結(jié)果;②設(shè)點的坐標為,分兩種情況:點在點上方,連接,得=++=8,點在點的下方,得=8,分別列出方程解方程即可得出結(jié)果;(2)由S△AOF=S△QBF,則S△AOB=S△QOB,△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,得出OA=CQ,即可得出結(jié)果.【詳解】解:(1)①∵CD⊥x軸,AE⊥CD,∴AE∥x軸,四邊形AECO為矩形,點B到AE的距離為OA,∵點A(0,4),點C(3,0),∴AE=OC=3,OA=CE=4,∴S△ABE=AE?OA=×3×4=6,故答案為:6;②設(shè)點的坐標為.(i)∵點坐標為,點坐標為,∴.∵,∴.∴點在點上方,連接(如圖1).根據(jù)題意得∵,∴,∴,∴.∴當點的坐標為.(ii)點在點的下方,連接(如圖2).∵.∴.∴點在點的下方,根據(jù)題意得∵,∴,∴,∴.∴當點的坐標為.(2)(2)∵S△AOF=S△QBF,如圖3所示:∴S△AOB=S△QOB,∵△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,∴OA=CQ,∴點Q的坐標為(3,4),故答案為:(3,4).【點睛】本題是三角形綜合題,主要考查了圖形與點的坐標、矩形的判定與性質(zhì)、三角形面積的計算等知識,熟練掌握圖形與點的坐標,靈活運用割補法表示三角形面積列出方程是解題的關(guān)鍵.16.(1)一個籃球的價格90元,一個足球的價格50元;(2)購買籃球34個,足球16個,見解析【分析】(1)根據(jù)題意可以列出相應(yīng)的二元一次方程組,從而可以解答本題;(2)根據(jù)題意可以列出相應(yīng)的不等式,從而可以解答本題.【詳解】解:(1)設(shè)一個籃球的價格元,一個足球的價格元,則有,,解得:,∴一個籃球的價格90元,一個足球的價格50元;(2)設(shè)購進籃球個,則購進足球個.∵籃球的數(shù)量不少于足球數(shù)量的2倍,,解得:∵籃球價格高于足球價格,∴在購買數(shù)量固定,則買的籃球越少越省錢,∴最省錢的購買方案是購買籃球34個,足球16個.【點睛】本題考查一元一次不等式的應(yīng)用、二元一次方程組的應(yīng)用,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組和不等式,利用方程的思想和不等式的性質(zhì)解答.17.(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)B;(3)t=或t=或t=【分析】(1)根據(jù)點在平面直角坐標系中的平移規(guī)律求解可得答案;(2)由1+t=n時t=n﹣1,知n﹣t=n﹣(n﹣1)=1,據(jù)此可得答案;(3)分n為奇數(shù)和偶數(shù)兩種情況,得出對應(yīng)的方程,解之可得n關(guān)于t的式子.【詳解】解:(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)當1+t=n時,t=n﹣1.此時n﹣t=n﹣(n﹣1)=1,故選:B;(3)當n為奇數(shù)時:1+t=n﹣t解得t=,當n為偶數(shù)時:1+t=n﹣t+1解得t=,或1+t=n﹣t﹣1解得t=.【點睛】本題主要考查坐標與圖形變化—平移,解題的關(guān)鍵是掌握點在平面直角坐標系中的平移規(guī)律:橫坐標,右移加,左移減;縱坐標,上移加,下移減.18.(1)1或3;(2)∠APD=∠CDP+∠PAB或∠APD=∠PAB-∠CDP,理由見解析【分析】(1)由非負數(shù)的性質(zhì)求出a,b,得到AB的長,結(jié)合點C坐標求出平行四邊形ABCD的面積,再根據(jù)的面積等于平行四邊形面積的,列出方程,解之即可;(2)分點P在線段OC上和點P在OC的延長線上,兩種情況,過P作PQ∥AB,利用平行線的性質(zhì)求解.【詳解】解:(1)∵,∴a=-4,b=3,即A(-4,0),B(3,0),∴AB=3-(-4)=7,又C(0,4),∴OC=4,∴平行四邊形ABCD的面積=4×7=28,由題意可知:PC=2t,則OP=,∵的面積等于平行四邊形面積的,∴,解得:t=1或t=3,(2)如圖,當點P在線段OC上時,過P作PQ∥AB,則PQ∥CD,∴∠CDP=∠DPQ,∠APQ=∠PAB,∴∠APD=∠DPQ+∠APQ=∠CDP+∠PAB;當點P在OC的延長線上時,過P作PQ∥AB,則PQ∥CD,∴∠CDP=∠DPQ,∠APQ=∠PAB,∴∠APD=∠APQ-∠DPQ=∠PAB-∠CDP.【點睛】本題考查了坐標與圖形,平行線的性質(zhì),解題的關(guān)鍵是掌握坐標和圖形的關(guān)系,將坐標與線段長進行轉(zhuǎn)化,同時適當添加輔助線,構(gòu)造平行線.19.(1)g(-1)=2g(-2)=-1(2)a=-4(3)a=,b=-4.【解析】【分析】(1)將x=-1和x=-2分別代入可得出答案;(2)將x=代入可得關(guān)于a的一元一次方程,解出即可;(3)由f(1)=0,把x=1代入可得關(guān)于a、b、k的方程,根據(jù)無論k為何值時,都成立就可求出a、b的值.【詳解】(1)由題意得:g(-1)=-2×(-1)2-3×(-1)+1=2;g(-2)=-2×(-2)2-3×(-2)+1=-1;(2)由題意得:,解得:a=-4;(3)∵k無論為何值,總有f(1)=0,∴=0,則當k=1、k=0時,可得方程組,解得:.【點睛】本題考查了代數(shù)式求值、解一元一次方程、一元一次方程的解、解二元一次方程組等,讀懂新定義是解題的關(guān)鍵.20.(1),;(2);(3)【解析】【分析】(1)利用非負數(shù)的性質(zhì)即可解決問題;(2)利用三角形面積求法,由列方程組,求出點C坐標,進而由△ACD面積求出D點坐標.(3)由平行線間距離相等得到,繼而求出E點坐標,同理求出F點坐標,再由GE=12求出G點坐標,根據(jù)求出PG的長即可求P點坐標.【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點睛】本題考查的是二元一次方程的應(yīng)用、三角形的面積公式、坐標與圖形的性質(zhì)、平移的性質(zhì),靈活運用分情況討論思想、掌握平移規(guī)律是解題的關(guān)鍵.21.(1)∠C+∠BAD=90°,理由見解析;(2)9°【分析】(1)先過點B作BG∥DM,根據(jù)同角的余角相等,得出∠ABD=∠CBG,再根據(jù)平行線的性質(zhì),得出∠C=∠CBG,即可得到∠ABD=∠C,可得∠C+∠BAD=90°;(2)先過點B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,再設(shè)∠DBE=α,∠ABF=β,根據(jù)∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=9°.【詳解】解:(1)如圖2,過點B作BG∥DM,∵BD⊥AM,∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C,∴∠C+∠BAD=90°;(2)如圖3,過點B作BG∥DM,BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(1)可得∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=5∠DBE=5α,∴∠AFC=5α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②聯(lián)立方程組,解得α=9°,∴∠ABE=9°.【點睛】本題主要考查了平行線的性質(zhì)的運用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯角,運用等角的余角(補角)相等進行推導(dǎo).余角和補角計算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時注意方程思想的運用.22.(1)7441不是“誠勤數(shù)”;5463是“誠勤數(shù)”;(2)滿足條件的A為:2314或5005或3250.【分析】(1)直接利用定義進行驗證,即可得到答案;(2)由題意,設(shè)這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),然后根據(jù)13的倍數(shù)關(guān)系,以及“5類誠勤數(shù)”的定義,利用分類討論的進行分析,即可得到答案.【詳解】解:(1)在7441中,7+4=11,4+1=5,∵115,∴7441不是“誠勤數(shù)”;在5436中,∵5+4=6+3=9,∴5463是“誠勤數(shù)”;(2)根據(jù)題意,設(shè)這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),且,,∴這個四位數(shù)為:,∵,,∴,∵這個四位數(shù)是13的倍數(shù),∴必須是13的倍數(shù);∵,,∴在時,取到最大值60,∴可以為:2、15、28、41、54,∵,則是3的倍數(shù),∴或,∴或;①當時,,∵,且a為非負整數(shù),∴或,∴或,若,則,此時;若,則,此時;②當時,,∵,且a為非負整數(shù),∴是3的倍數(shù),且,∴,∴,則,∴;綜合上述,滿足條件的A為:2314或5005或3250.【點睛】本題考查了二元一次方程,新定義的運算法則,解題的關(guān)鍵是熟練掌握題意,正確列出二元一次方程,結(jié)合新定義,利用分類討論的思想進行解題.23.(1)2,7,4;(2);(3)①t的內(nèi)數(shù);②符合條件的最大實心正方形有2個,離原點最遠的格點的坐標有兩個,為.【分析】(1)根據(jù)內(nèi)數(shù)的定義即可求解;(2)根據(jù)內(nèi)數(shù)的定義可列不等式,求解即可;(3)①分析可得當時,即t的內(nèi)數(shù)為2時,;當時,即t的內(nèi)數(shù)為3時,,當時,即t的內(nèi)數(shù)為4時,……歸納可得結(jié)論;②分析可得當t的內(nèi)數(shù)為奇數(shù)時,最大實心正方形有2個;當t的內(nèi)數(shù)為偶數(shù)時,最大實心正方形有1個;且最大實心正方形的邊長為:的內(nèi)數(shù)-1,即可求解.【詳解】解:(1),所以1的內(nèi)數(shù)是2;,所以20的內(nèi)數(shù)是7;,所以6的內(nèi)數(shù)是4;(2)∵3是x的內(nèi)數(shù),∴,解得;(3)①當時,即t的內(nèi)數(shù)為2時,;當時,即t的內(nèi)數(shù)為3時,,當時,即t的內(nèi)數(shù)為4時,,……∴t的內(nèi)數(shù);②當t的內(nèi)數(shù)為2時,最大實心正方形有1個;當t的內(nèi)數(shù)為3時,最大實心正方形有2個,當t的內(nèi)數(shù)為4時,最大實心正方形有1個,……即當t的內(nèi)數(shù)為奇數(shù)時,最大實心正方形有2個;當t的內(nèi)數(shù)為偶數(shù)時,最大實心正方形有1個;∴當?shù)膬?nèi)數(shù)為9時,符合條件的最大實心正方形有2個,由前幾個例子推理可得最大實心正方形的邊長為:的內(nèi)數(shù)-1,∴此時最大實心正方形的邊長為8,離原點最遠的格點的坐標有兩個,為.【點睛】本題考查圖形類規(guī)律探究,明確題干中內(nèi)數(shù)的定義是解題的關(guān)鍵.24.(1)P3,P4;(2)(-0.5,3)或(-0.5,-1);(3);(4)或【分析】(1)根據(jù)題意分析,即可得到答案;(2)結(jié)合題意,首先求得線段中點C坐標,再根據(jù)題意分析,即可得到答案;(3)過點A作軸,過點C作軸,交于點D,過點A作,交y軸于點,過點C作,交y軸于點,根據(jù)三角形和直角坐標系的性質(zhì),得;再根據(jù)直角坐標系和等腰直角三角形性質(zhì),得,,從而得到答案;(4)根據(jù)題意,得線段中點坐標;再結(jié)合題意列不等式并求解,即可得到答案.【詳解】(1)根據(jù)題意,點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點為P3(﹣1,﹣2),P4(﹣,4)故答案為:P3,P4;(2)∵A(﹣2,1),B(1,1)∴線段中點C坐標為:,即∵點M是線段AB的最佳內(nèi)垂點且到線段AB的距離是2∴當或,即當或時,|AQ-BQ|=0,為最小值故答案為:(-0.5,3)或(-0.5,-1);(3)如圖,過點A作軸,過點C作軸,交于點D,過點A作,交y軸于點,過點C作,交y軸于點,∵點A(﹣2,1),C(﹣4,3)∴,,∴∴,,即,∴故答案為:;(4)∵點D(m,0),E(m+4,0)∴線段中點坐標為根據(jù)題意,得:當時,;當時,;∴或.【點睛】本題考查了直角坐標系、一元一次不等式知識;解題的關(guān)鍵是熟練掌握直角坐標系、一元一次不等式、坐標的性質(zhì),從而完成求解.25.(1)加工廠購進A種原料25噸,B種原料15噸;(2)當m﹣n<0,即a<b時,方案一運輸總花費少,當m﹣n=0,即a=b時,兩種運輸總花費相等,當m﹣n>0,即a>b時,方案二運輸總花費少,見解析【分析】(1)設(shè)加工廠購進種原料噸,種原料噸,由題意:某加工廠用52500元購進、兩種原料共40噸,其中原料每噸1500元,原料每噸1000元.列方程組,解方程組即可;(2)設(shè)公路運輸?shù)膯蝺r為元,鐵路運輸?shù)膯蝺r為元,有兩種方案,方案一:原料公路運輸,原料鐵路運輸;方案二:原料鐵路運輸,原料公路運輸;設(shè)方案一的運輸總花費為元,方案二的運輸總花費為元,分別求出、,再分情況討論即可.【詳解】解:(1)設(shè)加工廠購進種原料噸,種原料噸,由題意得:,解得:,答:加工廠購進種原料25噸,種原料15噸;(2)設(shè)公路運輸?shù)膯蝺r為元,鐵路運輸?shù)膯蝺r為元,根據(jù)題意,有兩種方案,方案一:原料公路運輸,原料鐵路運輸;方案二:原料鐵路運輸,原料公路運輸;設(shè)方案一的運輸總花費為元,方案二的運輸總花費為元,則,,,當,即時,方案一運輸總花費少,即原料公路運輸,原料鐵路運輸,總花費少;當,即時,兩種運輸總花費相等;當,即時,方案二運輸總花費少,即原料鐵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論