版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川遂寧市第二中學7年級數(shù)學下冊第四章三角形綜合測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、以下列各組線段為邊,能組成三角形的是()A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm2、如圖,點,,,在一條直線上,,,,,,則()A.4 B.5 C.6 D.73、BP是∠ABC的平分線,CP是∠ACB的鄰補角的平分線,∠ABP=20°,∠ACP=50°,則∠P=()A.30° B.40° C.50° D.60°4、如圖,點、、、在同一條直線上,已知,,添加下列條件中的一個:①;②;③;④.其中不能確定的是()A.① B.② C.③ D.④5、如圖,AB∥CD,∠E+∠F=85°,則∠A+∠C=()A.85° B.105°C.115° D.95°6、根據(jù)下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,7、以下列長度的三條線段為邊,能組成三角形的是()A. B. C. D.8、已知的三邊長分別為a,b,c,則a,b,c的值可能分別是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,109、如圖,在△ABC與△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF于點D,連接EB.下列結(jié)論:①∠FAC=40°;②AF=AC;③∠EFB=40°;④AD=AC,正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個10、如圖,平分,,連接,并延長,分別交,于點,,則圖中共有全等三角形的組數(shù)為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按圖中所示位置擺放,點D在邊AB上,EFBC,則∠ADF的度數(shù)為_____度.2、已知,如圖,AB=AC,AD=AE,BE與CD相交于點P,則下列結(jié)論:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4對全等三角形;正確的是_____(請?zhí)顚懶蛱枺?、如圖,已知△ABC≌△DEF,∠B=30°,∠F=40°,則∠A的度數(shù)是______.4、兩角和它們的夾邊分別相等的兩個三角形全等(可以簡寫成_____).5、如圖,,,、分別為線段和射線上的一點,若點從點出發(fā)向點運動,同時點從點出發(fā)向點運動,二者速度之比為,運動到某時刻同時停止,在射線上取一點,使與全等,則的長為________.6、等腰三角形的一條邊長為4cm,另一條邊長為6cm,則它的周長是________.7、如圖,在中,,一條線段,P,Q兩點分別在線段和的垂線上移動,若以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,則的長為_________.8、我們將一副三角尺按如圖所示的位置擺放,則_______°.9、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個條件是____.10、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點P,點E、F分別在邊BC、AC上,且都不與點C重合,若∠EPF=45°,連接EF,當AC=6,BC=8,AB=10時,則△CEF的周長為_____.三、解答題(6小題,每小題10分,共計60分)1、如圖,在中,點D、E分別在邊AB、AC上,BE與CD交于點F,,,.求和的度數(shù).2、如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點為射線CB上一動點,連結(jié)AE,作AF⊥AE且AF=AE.(1)如圖1,過F點作FD⊥AC交AC于D點,求證:FD=BC;(2)如圖2,連結(jié)BF交AC于G點,若AG=3,CG=1,求證:E點為BC中點.(3)當E點在射線CB上,連結(jié)BF與直線AC交子G點,若BC=4,BE=3,則.(直接寫出結(jié)果)3、在四邊形ABCD中,,點E在直線AB上,且.(1)如圖1,若,,,求AB的長;(2)如圖2,若DE交BC于點F,,求證:.4、如圖,是的中線,分別過點、作及其延長線的垂線,垂足分別為、.(1)求證:;(2)若的面積為8,的面積為6,求的面積.5、如圖,已知,,求證:.6、如圖,在和中,,,,.連接,交于點,連接.(Ⅰ)求證:;(Ⅱ)求的大?。唬á螅┣笞C:-參考答案-一、單選題1、A【分析】三角形的任意兩條之和大于第三邊,任意兩邊之差小于第三邊,根據(jù)原理再分別計算每組線段當中較短的兩條線段之和,再與最長的線段進行比較,若和大于最長的線段的長度,則三條線段能構(gòu)成三角形,否則,不能構(gòu)成三角形,從而可得答案.【詳解】解:所以以3cm,4cm,5cm為邊能構(gòu)成三角形,故A符合題意;所以以3cm,3cm,6cm為邊不能構(gòu)成三角形,故B不符合題意;所以以5cm,10cm,4cm為邊不能構(gòu)成三角形,故C不符合題意;所以以1cm,2cm,3cm為邊不能構(gòu)成三角形,故D不符合題意;故選A【點睛】本題考查的是三角形的三邊之間的關(guān)系,掌握“利用三角形三邊之間的關(guān)系判定三條線段能否組成三角形”是解本題的關(guān)鍵.2、A【分析】由題意易得,然后可證,則有,進而問題可求解.【詳解】解:∵,∴,∵,,∴,∴,∵,∴;故選A.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.3、A【分析】根據(jù)角平分線的定義以及一個三角形的外角等于與它不相鄰的兩個內(nèi)角和,可求出∠P的度數(shù).【詳解】∵BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM?∠CBP=50°?20°=30°,故選:A.【點睛】本題考查三角形外角性質(zhì)以及角平分線的定義,解題時注意:一個三角形的外角等于與它不相鄰的兩個內(nèi)角的和.4、B【分析】由已知條件知可得:∠A=∠D,AB=DE,再結(jié)合全等三角形的判定定理進行解答即可.【詳解】解:已知條件知:∠A=∠D,AB=DEA、當添加AC=DF時,根據(jù)SAS能判,故本選項不符合題意;B、當添加BC=EF時則BC=EF,根據(jù)SSA不能判定,故本選項符合題意;C、當添加時,根據(jù)ASA能判定,故本選項不符合題意;D、當添加時,根據(jù)AAS能判定,故本選項不符合題意.故選:B.【點睛】本題主要考查了全等三角形的判定定理,理解SSA不能判定三角形全等成為解答本題的關(guān)鍵.5、D【分析】設(shè)交于點,過點作,根據(jù)平行線的性質(zhì)可得,根據(jù)三角形的外角性質(zhì)可得,進而即可求得【詳解】解:設(shè)交于點,過點作,如圖,∵∴∠E+∠F=85°故選D【點睛】本題考查了平行線的性質(zhì),三角形的外角性質(zhì),平角的定義,掌握三角形的外角性質(zhì)是解題的關(guān)鍵.6、B【分析】根據(jù)三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.7、D【分析】根據(jù)三角形的三邊關(guān)系,即可求解.【詳解】解:A、因為,所以不能構(gòu)成三角形,故本選項不符合題意;B、因為,所以不能構(gòu)成三角形,故本選項不符合題意;C、因為,所以不能構(gòu)成三角形,故本選項不符合題意;D、因為,所以能構(gòu)成三角形,故本選項符合題意;故選:D【點睛】本題主要考查了三角形的三邊關(guān)系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關(guān)鍵.8、C【分析】三角形的三邊應滿足兩邊之和大于第三邊,兩邊之差小于第三邊,據(jù)此求解.【詳解】解:A、1+2=3,不能組成三角形,不符合題意;B、3+4=7,不能組成三角形,不符合題意;C、2+3>4,能組成三角形,符合題意;D、4+5<10,不能組成三角形,不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,滿足兩條較小邊的和大于最大邊即可.9、C【分析】由“SAS”可證△ABC≌△AEF,由全等三角形的性質(zhì)依次判斷可求解.【詳解】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正確,∴∠BAE=∠FAC=40°,故①正確,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=40°,故③正確,無法證明AD=AC,故④錯誤,故選:C.【點睛】本題考查全等三角形的判定與性質(zhì),是重要考點,掌握相關(guān)知識是解題關(guān)鍵.10、C【分析】求出∠BAD=∠CAD,根據(jù)SAS推出△ADB≌△ADC,根據(jù)全等三角形的性質(zhì)得出∠B=∠C,∠ADB=∠ADC,求出∠ADE=∠ADF,根據(jù)ASA推出△AED≌△AFD,根據(jù)全等三角形的性質(zhì)得出AE=AF,根據(jù)SAS推出△ABF≌△ACE,根據(jù)AAS推出△EDB≌△FDC即可.【詳解】解:圖中全等三角形的對數(shù)有4對,有△ADB≌△ADC,△ABF≌△ACE,△AED≌△AFD,△EDB≌△FDC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ADB和△ADC中∴△ADB≌△ADC(SAS),∴∠B=∠C,∠ADB=∠ADC,∵∠EDB=∠FDC,∴∠ADB?∠EDB=∠ADC?∠FDC,∴∠ADE=∠ADF,在△AED和△AFD中∴△AED≌△AFD(ASA),∴AE=AF,在△ABF和△ACE中∴△ABF≌△ACE(SAS),∵AB=AC,AE=AF,∴BE=CF,在△EDB和△FDC中∴△EDB≌△FDC(AAS),故選:C.【點睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能綜合運用定理進行推理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應邊相等,對應角相等.二、填空題1、75【分析】設(shè)CB與ED交點為G,依據(jù)平行線的性質(zhì),即可得到∠CGD的度數(shù),再根據(jù)三角形外角的性質(zhì),得到∠BDE的度數(shù),即可得∠ADF的度數(shù).【詳解】如圖所示,設(shè)CB與ED交點為G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案為:75.【點睛】本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì),解題時注意:兩條平行線被第三條直線所截,同位角相等.2、①②④【分析】先證△AEB≌△ADC(SAS),再證△EPC≌△DPB(AAS),可判斷①;可證△APC≌△APB(SSS),判定斷②;利用特殊等腰三角形可得可判斷③,根據(jù)全等三角形個數(shù)可判斷④即可【詳解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正確;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正確;當AP=PB時,∠PAB=∠B,當AP≠PB時,∠PAB≠∠B,故③不正確;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4對全等三角形,故④正確故答案為:①②④【點睛】本題考查三角形全等判定與性質(zhì),掌握全等三角形的判定方法與性質(zhì)是解題關(guān)鍵.3、110°【分析】先根據(jù)全等三角形的性質(zhì)得到∠C=∠F=40°,然后根據(jù)三角形內(nèi)角和求∠F的度數(shù).【詳解】解:∵△ABC≌△DEF,∴∠C=∠F=40°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣30°=110°.故答案為:110°.【點睛】本題考查了全等三角形的性質(zhì):全等三角形的對應邊相等;全等三角形的對應角相等.4、角邊角或【分析】根據(jù)全等三角形的判定定理得出即可.【詳解】解答:解:兩角和它們的夾邊分別相等的兩個三角形全等,簡寫成角邊角或ASA,故答案為:角邊角或ASA.【點睛】本題考查了全等三角形的判定定理,掌握全等三角形的判定定理是解題的關(guān)鍵.5、2或6或2【分析】設(shè)BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當BE=AG,BF=AE時,列方程解得t,可得AG;情況二:當BE=AE,BF=AG時,列方程解得t,可得AG.【詳解】解:設(shè)BE=t,則BF=2t,AE=6-t,因為∠A=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當BE=AG,BF=AE時,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當BE=AE,BF=AG時,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點睛】本題主要考查了全等三角形的性質(zhì),利用分類討論思想是解答此題的關(guān)鍵.6、16cm或14cm【分析】根據(jù)題意分腰為6cm和底為6cm兩種情況,分別求出即可.【詳解】解:①當腰為6cm時,它的周長為6+6+4=16(cm);②當?shù)诪?cm時,它的周長為6+4+4=14(cm);故答案為:16cm或14cm.【點睛】本題考查了等腰三角形的性質(zhì)的應用,注意:等腰三角形的兩腰相等,注意分類討論.7、6cm或12cm【分析】先根據(jù)題意得到∠BCA=∠PAQ=90°,則以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,由此利用全等三角形的性質(zhì)求解即可.【詳解】解:∵AX是AC的垂線,∴∠BCA=∠PAQ=90°,∴以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,當△ACB≌△QAP,∴;當△ACB≌△PAQ,∴,故答案為:6cm或12cm.【點睛】本題主要考查了全等三角形的性質(zhì),熟知全等三角形的性質(zhì)是解題的關(guān)鍵.8、45【分析】利用三角形的外角性質(zhì)分別求得∠α和∠β的值,代入求解即可.【詳解】解:根據(jù)題意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α?∠β=120°-75°=45°,故答案為:45.【點睛】本題考查了三角形的外角性質(zhì),解答本題的關(guān)鍵是明確題意,找到三角板中隱含的角的度數(shù),利用數(shù)形結(jié)合的思想解答.9、AB=AD(答案不唯一)【分析】根據(jù)SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點睛】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知全等三角形的判定定理.10、4【分析】根據(jù)題意過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ,進而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點睛】本題考查角平分線的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問.三、解答題1、87°,40°【分析】根據(jù)三角形外角的性質(zhì)可得,,代入計算即可求出,再根據(jù)三角形內(nèi)角和定理求解即可.【詳解】解:∵,,∴,∵,∴.【點睛】本題考查了三角形內(nèi)角和和外角的性質(zhì),解題關(guān)鍵是準確識圖,理清角之間的關(guān)系,準確進行計算.2、(1)證明見解析;(2)證明見解析;(3)或【分析】(1)證明△AFD≌△EAC,根據(jù)全等三角形的性質(zhì)得到DF=AC,等量代換證明結(jié)論;(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長,得到答案;(3)過F作FD⊥AG的延長線交于點D,根據(jù)全等三角形的性質(zhì)得到CG=GD,AD=CE=7,代入計算即可.【詳解】(1)證明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,F(xiàn)D=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E點為BC中點;(3)當點E在CB的延長線上時,過F作FD⊥AG的延長線交于點D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴AG=CG+AC=5.5,∴,同理,當點E在線段BC上時,AG=AC-CG+=2.5,∴,故答案為:或.【點睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.3、(1)5;(2)證明見解析【分析】(1)推出∠ADE=∠BEC,根據(jù)AAS證△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;(2)推出∠A=∠EBC,∠AED=∠BCE,根據(jù)AAS證△AED≌△BCE,推出AD=BE,AE=BC,即可得出結(jié)論.【詳解】(1)解:∵∠DEC=∠A=90°,∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,∴∠ADE=∠BEC,∵,∠A=90°,∴∠B+∠A=180°,∴∠B=∠A=90°,在△AED和△CEB中,∴△AED≌△BCE(AAS),∴AE=BC=3,BE=AD=2,∴AB=AE+BE=2+3=5.(2)證明:∵,∴∠A=∠EBC,∵∠DFC=∠AEC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026杭州文化廣播電視集團所屬有關(guān)事業(yè)單位招聘6人考試備考試題及答案解析
- 2026新疆和田佰安人力資源有限責任公司招(競)聘4人考試備考題庫及答案解析
- 2026江西南昌大學人工智能學院科研助理招聘1人考試參考題庫及答案解析
- 2026福建南平武夷創(chuàng)谷產(chǎn)業(yè)園區(qū)發(fā)展有限公司招聘市場化項目工作人員若干人考試參考題庫及答案解析
- 2026浙江臺州市中心醫(yī)院(臺州學院附屬醫(yī)院)安保崗位招聘5人考試備考題庫及答案解析
- 2026江西南昌市市場監(jiān)督管理執(zhí)法稽查局招聘倉庫管理人員1人考試備考題庫及答案解析
- 2026北京海淀區(qū)恩濟里體大幼兒園招聘2人考試備考題庫及答案解析
- 2026河北石家莊城市更新集團有限公司勞務派遣制人員招聘6人考試參考題庫及答案解析
- 2026四川廣安市中醫(yī)醫(yī)院招聘6人考試備考試題及答案解析
- 2026廣東深圳人力資源保障局轉(zhuǎn)發(fā)深圳港引航站招聘引航員6人考試參考題庫及答案解析
- 2024年北京第二次高中學考物理試卷(含答案詳解)
- 中建履帶吊安拆裝方案
- 碧桂園物業(yè)管家述職報告
- 入黨申請書專用紙-A4單面打印
- 高中化學基本概念大全
- 五級養(yǎng)老護理員職業(yè)鑒定理論考試題庫(核心400題)
- 湖北省荊州市五縣市區(qū)2025屆高三第二次調(diào)研物理試卷含解析
- 2024年山東省中考語文試卷十三套合卷附答案
- 第十五屆全國電力行業(yè)職業(yè)技能競賽(發(fā)電集控值班員)考試題庫-上(單選題)
- 2025屆高考寫作:思辨性作文寫作指導
- 2024年安徽管子文化旅游集團有限公司招聘筆試沖刺題(帶答案解析)
評論
0/150
提交評論