強化訓練黑龍江七臺河勃利縣7年級數(shù)學下冊第四章三角形專項攻克試題(含答案解析)_第1頁
強化訓練黑龍江七臺河勃利縣7年級數(shù)學下冊第四章三角形專項攻克試題(含答案解析)_第2頁
強化訓練黑龍江七臺河勃利縣7年級數(shù)學下冊第四章三角形專項攻克試題(含答案解析)_第3頁
強化訓練黑龍江七臺河勃利縣7年級數(shù)學下冊第四章三角形專項攻克試題(含答案解析)_第4頁
強化訓練黑龍江七臺河勃利縣7年級數(shù)學下冊第四章三角形專項攻克試題(含答案解析)_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

黑龍江七臺河勃利縣7年級數(shù)學下冊第四章三角形專項攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、小東要從下面四組木棒中選擇一組制作一個三角形作品,你認為他應該選()組.A.,, B.,, C.,, D.,,2、如圖,點,,,在一條直線上,,,,,,則()A.4 B.5 C.6 D.73、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E4、定理:三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測量所得)又∵133°=70°+63°(計算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內(nèi)角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質(zhì)).下列說法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測量夠100個三角形進行驗證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴謹?shù)耐评碜C明了該定理5、若三條線段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個 B.2個 C.3個 D.4個6、在下列長度的各組線段中,能組成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,127、如圖,AB=AC,點D、E分別在AB、AC上,補充一個條件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC8、根據(jù)下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,9、如圖,點F,C在BE上,AC=DF,BF=EC,AB=DE,AC與DF相交于點G,則與2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B10、如圖,點O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,則OC的長為()A.3 B.4 C.5 D.6第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D,己知DE=4,AD=6,則BE的長為___.2、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.3、如圖,PA=PB,請你添加一個適當?shù)臈l件:___________,使得△PAD≌△PBC.4、如圖,點E,F(xiàn)分別為線段BC,DB上的動點,BE=DF.要使AE+AF最小值,若用作圖方式確定E,F(xiàn),則步驟是_____.5、如圖,在ABC中,已知點D,E,F(xiàn)分別為邊BC,AD,CE的中點,且ABC的面積等于24cm2,則陰影部分圖形面積等于_____cm26、如圖,已知AC與BD相交于點P,ABCD,點P為BD中點,若CD=7,AE=3,則BE=_________.7、如圖,在中,,一條線段,P,Q兩點分別在線段和的垂線上移動,若以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,則的長為_________.8、在△ABC中,若AC=3,BC=7則第三邊AB的取值范圍為________.9、在△ABC中,三邊為、、,如果,,,那么的取值范圍是_____.10、如圖,在中,,點D,E在邊BC上,,若,,則CE的長為______.三、解答題(6小題,每小題10分,共計60分)1、如圖,在中,,,點D是內(nèi)一點,連接CD,過點C作且,連接AD,BE.求證:.2、人教版初中數(shù)學教科書八年級上冊第36、37頁告訴我們作一個角等于已知角的方法:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作圖:(1)以O為圓心,任意長為半徑畫弧,分別交OA、OB于點C、D;(2)畫一條射線O′A′,以點O′為圓心,OC長為半徑畫弧,交O′A′于點C′;(3)以點C′為圓心,CD長為半徑畫弧,與第2步中所畫的弧相交于點D′;(4)過點D′畫射線O′B′,則∠A′O′B′=∠AOB.請你根據(jù)以上材料完成下列問題:(1)完成下面證明過程(將正確答案寫在相應的橫線上).證明:由作圖可知,在△O′C′D′和△OCD中,,∴△O′C′D′≌,∴∠A′O′B'=∠AOB.(2)這種作一個角等于已知角的方法依據(jù)是.(填序號)①AAS;②ASA;③SSS;④SAS3、如圖,四邊形中,,,于點.(1)如圖1,求證:;(2)如圖2,延長交的延長線于點,點在上,連接,且,求證:;(3)如圖3,在(2)的條件下,點在的延長線上,連接,交于點,連接,且,當,時,求的長.4、證明“全等三角形的對應角的平分線相等”.要求:將已有圖形根據(jù)題意補充完整,并據(jù)此寫出己知、求證和證明過程.5、將一副三角板中的兩塊直角三角尺的直角頂點C按如圖1方式疊放在一起,其中,.(1)若,則的度數(shù)為_______;(2)直接寫出與的數(shù)量關(guān)系:_________;(3)直接寫出與的數(shù)量關(guān)系:__________;(4)如圖2,當且點E在直線的上方時,將三角尺固定不動,改變?nèi)浅叩奈恢?,但始終保持兩個三角尺的頂點C重合,這兩塊三角尺是否存在一組邊互相平行?請直接寫出角度所有可能的值___________.6、如圖,在△ABC中,AB=AC,∠BAC=30°,點D是△ABC內(nèi)一點,DB=DC,∠DCB=30°,點E是BD延長線上一點,AE=AB.(1)求∠ADB的度數(shù);(2)線段DE,AD,DC之間有什么數(shù)量關(guān)系?請說明理由.(提示:在線段DE上截取線段EM=BD,連接線段AM或者在線段DE上截取線段DM=AD連接線段AM).-參考答案-一、單選題1、D【分析】利用三角形的三邊關(guān)系,即可求解.【詳解】解:根據(jù)三角形的三邊關(guān)系,得:A、,不能組成三角形,不符合題意;B、,不能夠組成三角形,不符合題意;C、,不能夠組成三角形,不符合題意;D、,能夠組成三角形,符合題意.故選:D【點睛】本題主要考查了三角形的三邊關(guān)系,熟練掌握三角形的兩邊之和大于第三邊,兩邊只差小于第三邊是解題的關(guān)鍵.2、A【分析】由題意易得,然后可證,則有,進而問題可求解.【詳解】解:∵,∴,∵,,∴,∴,∵,∴;故選A.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.3、C【分析】根據(jù)全等三角形的判定定理進行分析即可;【詳解】根據(jù)已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據(jù)全等條件可得:A.∠A=∠D,可根據(jù)ASA證明,A正確;B.BC=EC,可根據(jù)SAS證明,B正確;C.AB=DE,不能證明,C故錯誤;D.∠B=∠E,根據(jù)AAS證明,D正確;故選:C.【點睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關(guān)鍵.4、D【分析】利用測量的方法只能是驗證,用定理,定義,性質(zhì)結(jié)合嚴密的邏輯推理推導新的結(jié)論才是證明,再逐一分析各選項即可得到答案.【詳解】解:證法一只是利用特殊值驗證三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,證法2才是用嚴謹?shù)耐评碜C明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測量夠100個三角形進行驗證,也只是驗證,不能證明該定理,故B不符合題意;故選D【點睛】本題考查的是三角形的外角的性質(zhì)的驗證與證明,理解驗證與證明的含義及證明的方法是解本題的關(guān)鍵.5、C【分析】根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進而求得三角形的個數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個值.則對應的三角形有3個.故選:C.【點睛】本題主要考查了三角形三邊關(guān)系,準確分析判斷是解題的關(guān)鍵.6、C【分析】根據(jù)三角形三邊關(guān)系定理:三角形兩邊之和大于第三邊,進行判定即可.【詳解】解:A、∵,∴不能構(gòu)成三角形;B、∵,∴不能構(gòu)成三角形;C、∵,∴能構(gòu)成三角形;D、∵,∴不能構(gòu)成三角形.故選:C.【點睛】本題主要考查運用三角形三邊關(guān)系判定三條線段能否構(gòu)成三角形的情況,理解構(gòu)成三角形的三邊關(guān)系是解題關(guān)鍵.7、C【分析】根據(jù)全等三角形的判定定理進行判斷即可.【詳解】解:根據(jù)題意可知:AB=AC,,若,則根據(jù)可以證明△ABE≌△ACD,故A不符合題意;若AD=AE,則根據(jù)可以證明△ABE≌△ACD,故B不符合題意;若BE=CD,則根據(jù)不可以證明△ABE≌△ACD,故C符合題意;若∠AEB=∠ADC,則根據(jù)可以證明△ABE≌△ACD,故D不符合題意;故選:C.【點睛】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解本題的關(guān)鍵.8、B【分析】根據(jù)三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.9、C【詳解】由題意根據(jù)等式的性質(zhì)得出BC=EF,進而利用SSS證明△ABC與△DEF全等,利用全等三角形的性質(zhì)得出∠ACB=∠DFE,最后利用三角形內(nèi)角和進行分析解答.【分析】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC與△DEF中,,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴2∠DFE=180°﹣∠FGC,故選:C.【點睛】本題考查全等三角形的判定與性質(zhì),其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).10、C【分析】證明△AOB≌△COD推出OB=OD,OA=OC,即可解決問題.【詳解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故選C.【點睛】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.二、填空題1、2【分析】根據(jù)AAS證明△ACD≌△CBE,再利用其性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD與△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE?DE=AD?DE=6?4=2.故答案為:2.【點睛】本題考查三角形全等的判定和性質(zhì),要根據(jù)AAS證明△ACD≌△CBE是解題的關(guān)鍵.2、5【分析】利用三角形的中線把三角形分成面積相等的兩個三角形進行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個三角形的性質(zhì)求解是解題的關(guān)鍵.3、∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【分析】已有∠P是公共角和邊PA=PB,根據(jù)全等三角全等的條件,利用AAS需要添加∠D=∠C,根據(jù)ASA需要添加∠PAD=∠PBC或∠DBC=∠CAD,根據(jù)邊角邊需要添加PD=PC或PC=PD.填入一個即可.【詳解】解:∵PA=PB,∠P是公共角,∴根據(jù)AAS可以添加∠D=∠C,,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠D=∠C,∴△PAD≌△PBC(AAS).根據(jù)ASA可以添加∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)ASA可以添加∠DBC=∠CAD,∴180°-∠DBC=180°-∠CAD,即∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)SAS可添加PD=PC在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).根據(jù)SAS可添加BD=AC,∵PA=PB,BD=AC,∴PA+AC=PB+BD即PC=PD,在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).故答案為:∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【點睛】本題考查三角形全等添加條件,掌握三角形全等判定方法與定理是解題關(guān)鍵.4、①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點【分析】按照①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點;如圖,點即為所求.故答案為:①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點.【點睛】本題考查了作一個角等于已知角、兩點之間線段最短、作線段、全等三角形的判定與性質(zhì)等知識點,熟練掌握尺規(guī)作圖的方法是解題關(guān)鍵.5、6【分析】因為點F是CE的中點,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分別是BC、AD的中點,可得△EBC的面積是△ABC面積的一半;利用三角形的等積變換可解答.【詳解】解:如圖,點F是CE的中點,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中點,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即陰影部分的面積為6cm2.故答案為6.【點睛】本題考查了三角形面積的等積變換:若兩個三角形的高(或底)相等,面積之比等于底邊(高)之比.6、4【分析】由題意利用全等三角形的判定得出,進而依據(jù)全等三角形的性質(zhì)得出進行分析計算即可.【詳解】解:∵ABCD,∴,∵點P為BD中點,∴,∵,,∴,∴,∵CD=7,AE=3,∴.故答案為:4.【點睛】本題考查全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.7、6cm或12cm【分析】先根據(jù)題意得到∠BCA=∠PAQ=90°,則以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,由此利用全等三角形的性質(zhì)求解即可.【詳解】解:∵AX是AC的垂線,∴∠BCA=∠PAQ=90°,∴以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,當△ACB≌△QAP,∴;當△ACB≌△PAQ,∴,故答案為:6cm或12cm.【點睛】本題主要考查了全等三角形的性質(zhì),熟知全等三角形的性質(zhì)是解題的關(guān)鍵.8、4<AB<10【分析】根據(jù)三角形的三邊關(guān)系,直接求解即可.【詳解】解:∵在△ABC中,AC=3,BC=7,,即,解得.故答案為:.【點睛】本題考查的是三角形的三邊關(guān)系,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.三角形中第三邊的長大于其他兩邊之差,小于其他兩邊之和.9、4<x<28【分析】根據(jù)三角形三邊的關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊解答即可;【詳解】解:由題意得:解得:4<x<28.故答案為:4<x<28【點睛】本題考查了三角形三邊的關(guān)系,熟練掌握三角形三邊的關(guān)系是解題的關(guān)鍵.10、5【分析】由題意易得,然后可證,則有,進而問題可求解.【詳解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案為5.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.三、解答題1、證明見解析.【分析】先根據(jù)角的和差可得,再根據(jù)三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)即可得證.【詳解】證明:,,,,,在和中,,,.【點睛】本題考查了三角形全等的判定定理與性質(zhì)等知識點,熟練掌握三角形全等的判定方法是解題關(guān)鍵.2、(1)CD,O′D′,△OCD,(2)③【分析】(1)根據(jù)SSS證明△D′O′C′≌△DOC,可得結(jié)論;(2)根據(jù)SSS證明三角形全等.(1)證明:由作圖可知,在△D′O′C′和△DOC中,,∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB.故答案為:CD,O′D′,△OCD,(2)解:上述證明過程中利用三角形全等的方法依據(jù)是SSS,故答案為:③【點睛】本題考查三角形綜合題,考查了三角形全等的判定和性質(zhì),解題的關(guān)鍵是讀懂圖象信息,靈活運用所學知識解決問題.3、(1)見解析;(2)見解析;(3)2【分析】(1)過點B作于點Q,根據(jù)AAS證明△得,再證明四邊形是矩形得BQ=CG,從而得出結(jié)論;(2)在GF上截取GH=GE,連接AH,證明AH=FH,GE=GH即可;(3)過點A作于點P,在FC上截取,連接,證明得,可證明AC是EH的垂直平分線,再證明和△得可求出,從而可得結(jié)論.【詳解】解:(1)證明:過點B作于點Q,如圖1∵又,∴△∴四邊形是矩形;(2)在GF上截取GH=GE,連接AH,如圖2,又(3)過點A作于點P,在FC上截取,連接,如圖3,由(1)、(2)知,,∵∴∵∴∴∴∠∵∴∠∴∵∴∠∴∴AC是EH的垂直平分線,∴∴又∵∴∴∠∴∠∵∠,∴∠∴∵∴∴∵∠∴,即∴∵,即∴在和中,AH=AM∠HAB=∠MAD∴△∴∴∴∴【點睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.4、見解析.【分析】根據(jù)圖形和命題寫出已知求證,根據(jù)全等三角形的性質(zhì)得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根據(jù)角平分線的定義得出∠BAD=∠B′A′D′,根據(jù)全等三角形的判定得出△BAD≌△B′A′D′,再根據(jù)全等三角形的性質(zhì)得出答案即可.【詳解】解:如圖,已知:△ABC≌△A′B′C′,AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,求證:AD=A′D′,證明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論