版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、二次函數(shù)的頂點(diǎn)坐標(biāo)為,圖象如圖所示,有下列四個(gè)結(jié)論:①;②;③④,其中結(jié)論正確的個(gè)數(shù)為(
)A.個(gè) B.個(gè) C.個(gè) D.個(gè)2、已知點(diǎn)都在反比例函數(shù)的圖象上,且,則下列結(jié)論一定正確的是(
)A. B. C. D.3、如圖,ABC是等邊三角形,點(diǎn)D、E分別在BC、AC上,且∠ADE=60°,AB=9,BD=3,則CE的長(zhǎng)等于()A.1 B. C. D.24、如圖,正五邊形內(nèi)接于⊙,為上的一點(diǎn)(點(diǎn)不與點(diǎn)重合),則的度數(shù)為(
)A. B. C. D.5、如圖,正比例函數(shù)和反比例函數(shù)的圖象在第一象限交于點(diǎn)且則的值為(
)A. B. C. D.6、古希臘數(shù)學(xué)家歐多克索斯在深入研究比例理論時(shí),提出了分線段的“中末比”問(wèn)題:點(diǎn)G將一線段分為兩線段,,使得其中較長(zhǎng)的一段是全長(zhǎng)與較短的段的比例中項(xiàng),即滿足,后人把這個(gè)數(shù)稱為“黃金分割”數(shù),把點(diǎn)G稱為線段的“黃金分割”點(diǎn).如圖,在中,已知,,若D,E是邊的兩個(gè)“黃金分割”點(diǎn),則的面積為(
)A. B. C. D.二、多選題(7小題,每小題2分,共計(jì)14分)1、下列命題中,不正確的是(
)A.三點(diǎn)可確定一個(gè)圓B.三角形的外心是三角形三邊中線的交點(diǎn)C.一個(gè)三角形有且只有一個(gè)外接圓D.三角形的外心必在三角形的內(nèi)部或外部2、下列多邊形中,一定不相似的是(
)A.兩個(gè)矩形 B.兩個(gè)菱形 C.兩個(gè)正方形 D.兩個(gè)平行四邊形3、在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a、b、c,且a=5,b=12,c=16,下面四個(gè)式子中錯(cuò)誤的有()A.sinA= B.cosA= C.tanA= D.sinB=4、如圖,,下列線段比值等于的是(
)A. B. C. D.5、在直角坐標(biāo)系中,若三點(diǎn)A(1,﹣2),B(2,﹣2),C(2,0)中恰有兩點(diǎn)在拋物線y=ax2+bx﹣2(a>0且a,b均為常數(shù))的圖象上,則下列結(jié)論正確的是(
).A.拋物線的對(duì)稱軸是直線B.拋物線與x軸的交點(diǎn)坐標(biāo)是(﹣,0)和(2,0)C.當(dāng)t>時(shí),關(guān)于x的一元二次方程ax2+bx﹣2=t有兩個(gè)不相等的實(shí)數(shù)根D.若P(m,n)和Q(m+4,h)都是拋物線上的點(diǎn)且n<0,則.6、下列關(guān)于圓的敘述正確的有()A.對(duì)角互補(bǔ)的四邊形是圓內(nèi)接四邊形B.圓的切線垂直于圓的半徑C.正多邊形中心角的度數(shù)等于這個(gè)正多邊形一個(gè)外角的度數(shù)D.過(guò)圓外一點(diǎn)所畫(huà)的圓的兩條切線長(zhǎng)相等7、已知,⊙的半徑為5,,某條經(jīng)過(guò)點(diǎn)的弦的長(zhǎng)度為整數(shù),則該弦的長(zhǎng)度可能為(
)A.4 B.6 C.8 D.10第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,I是△ABC的內(nèi)心,∠B=60°,則∠AIC=_____.2、《九章算術(shù)》是中國(guó)古代的數(shù)學(xué)專著,是“算經(jīng)十書(shū)”(漢唐之間出現(xiàn)的十部古算書(shū))中最重要的一種.中有下列問(wèn)題:“今有邑方不知大小,各中開(kāi)門.出北門八十步有木,出西門二百四十五步見(jiàn)木.問(wèn)邑方有幾何?”意思是:如圖,點(diǎn)M、點(diǎn)N分別是正方形ABCD的邊AD、AB的中點(diǎn),,,EF過(guò)點(diǎn)A,且步,步,已知每步約40厘米,則正方形的邊長(zhǎng)約為_(kāi)_________米.3、如圖,拋物線與直線交于A(-1,P),B(3,q)兩點(diǎn),則不等式的解集是_____.4、如圖,在四邊形ABCD中,點(diǎn)E、F分別是AB、CD的中點(diǎn),過(guò)點(diǎn)E作AB的垂線,過(guò)點(diǎn)F作CD的垂線,兩垂線交于點(diǎn)G,連接AG、BG、CG、DG,且∠AGD=∠BGC.若AD、BC所在直線互相垂直,的值為_(kāi)__.5、二次函數(shù)的最大值是__________.6、二次函數(shù)的最小值為_(kāi)_____.7、圖1是一種手機(jī)托架,使用該手機(jī)托架示意圖如圖3所示,底部放置手機(jī)處寬AB1.2厘米,托架斜面長(zhǎng)BD6厘米,它有C到F共4個(gè)檔位調(diào)節(jié)角度,相鄰兩個(gè)檔位間的距離為0.8厘米,檔位C到B的距離為2.4厘米.將某型號(hào)手機(jī)置于托架上(圖2),手機(jī)屏幕長(zhǎng)AG是15厘米,O是支點(diǎn)且OBOE2.5厘米(支架的厚度忽略不計(jì)).當(dāng)支架調(diào)到E檔時(shí),點(diǎn)G離水平面的距離GH為_(kāi)_________cm.四、解答題(6小題,每小題10分,共計(jì)60分)1、頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過(guò)點(diǎn)C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過(guò)P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).2、如圖,在中,,,,為的中點(diǎn).動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位向終點(diǎn)勻速運(yùn)動(dòng)(點(diǎn)不與、、重合),過(guò)點(diǎn)作的垂線交折線于點(diǎn).以、為鄰邊構(gòu)造矩形.設(shè)矩形與重疊部分圖形的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.(1)直接寫出的長(zhǎng)(用含的代數(shù)式表示);(2)當(dāng)點(diǎn)落在的邊上時(shí),求的值;(3)當(dāng)矩形與重疊部分圖形不是矩形時(shí),求與的函數(shù)關(guān)系式,并寫出的取值范圍;(4)沿直線將矩形剪開(kāi),得到兩個(gè)圖形,用這兩個(gè)圖形拼成不重疊且無(wú)縫隙的圖形恰好是三角形.請(qǐng)直接寫出所有符合條件的的值.3、如圖,矩形ABCD中,AB=6cm,BC=12cm..點(diǎn)M從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/秒的速度向B點(diǎn)移動(dòng),點(diǎn)N從點(diǎn)B開(kāi)始沿BC邊以2cm/秒的速度向點(diǎn)C移動(dòng).若M,N分別從A,B點(diǎn)同時(shí)出發(fā),設(shè)移動(dòng)時(shí)間為t(0<t<6),△DMN的面積為S.(1)求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最小值;(2)當(dāng)△DMN為直角三角形時(shí),求△DMN的面積.4、為了測(cè)量大樓頂上(居中)避雷針BC的長(zhǎng)度,在地面上點(diǎn)A處測(cè)得避雷針底部B和頂部C的仰角分別為55°58′和57°,已知點(diǎn)A與樓底中間部位D的距離約為80米,求避雷針BC的長(zhǎng)度.(參考數(shù)據(jù):sin55°58′≈0.83,cos55°58′≈0.56,tan55°58′≈1.48,sin57°≈0.84,tan57°≈1.54)5、如圖①已知拋物線的圖象與軸交于、兩點(diǎn)(在的左側(cè)),與的正半軸交于點(diǎn),連結(jié);二次函數(shù)的對(duì)稱軸與軸的交點(diǎn).(1)拋物線的對(duì)稱軸與軸的交點(diǎn)坐標(biāo)為,點(diǎn)的坐標(biāo)為_(kāi)____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點(diǎn),過(guò)點(diǎn)作軸的平行線,與直線交于點(diǎn)與拋物線交于點(diǎn),連結(jié),將沿翻折,的對(duì)應(yīng)點(diǎn)為’,在圖②中探究:是否存在點(diǎn),使得’恰好落在軸上?若存在,請(qǐng)求出的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.6、(1)方法導(dǎo)引:?jiǎn)栴}:如圖1,等邊三角形的邊長(zhǎng)為6,點(diǎn)是和的角平分線交點(diǎn),,繞點(diǎn)任意旋轉(zhuǎn),分別交的兩邊于,兩點(diǎn).求四邊形面積.討論:①小明:在旋轉(zhuǎn)過(guò)程中,當(dāng)經(jīng)過(guò)點(diǎn)時(shí),一定經(jīng)過(guò)點(diǎn).②小穎:小明的分析有道理,這樣我們就可以利用“”證出.③小飛:因?yàn)?,所以只要算出的面積就得出了四邊形的面積.老師:同學(xué)們的思路很清晰,也很正確.在分析和解決問(wèn)題時(shí),我們經(jīng)常會(huì)借用特例作輔助線來(lái)解決一般問(wèn)題:請(qǐng)你按照討論的思路,直接寫出四邊形的面積:________.(2)應(yīng)用方法:①特例:如圖2,的頂點(diǎn)在等邊三角形的邊上,,,邊于點(diǎn),于點(diǎn),求的面積.②探究:如圖3,已知,頂點(diǎn)在等邊三角形的邊上,,,記的面積為,的面積為,求的值.③應(yīng)用:如圖4,已知,頂點(diǎn)在等邊三角形的邊的延長(zhǎng)線上,,,記的面積為,的面積為,請(qǐng)直接寫出與的關(guān)系式.
-參考答案-一、單選題1、A【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)和已知條件,對(duì)每一項(xiàng)逐一進(jìn)行判斷即可.【詳解】解:由圖像可知a<0,c>0,∵對(duì)稱軸在正半軸,∴>0,∴b>0,∴,故①正確;當(dāng)x=2時(shí),y>0,故,故③正確;函數(shù)解析式為:y=a(x-1)2+2=ax2-2ax+a+2假設(shè)成立,結(jié)合解析式則有a+2<,解得a<,故②,④正確;故選:A.【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合圖象,運(yùn)用所學(xué)知識(shí)是解題關(guān)鍵.2、C【解析】【分析】根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】反比例函數(shù)中,=-2020<0,圖象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故選:C.【考點(diǎn)】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<0時(shí),圖象位于二四象限是解題關(guān)鍵.3、D【解析】【分析】通過(guò)△ABD∽△DCE,可得,即可求解.【詳解】解:∵△ABC是等邊三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故選:D.【考點(diǎn)】本題考查了三角形的相似,做題的關(guān)鍵是△ABD∽△DCE.4、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點(diǎn)的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對(duì)應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點(diǎn)】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.5、D【解析】【分析】根據(jù)點(diǎn)在直線正比例函數(shù)上,則它的坐標(biāo)應(yīng)滿足直線的解析式,故點(diǎn)的坐標(biāo)為.再進(jìn)一步利用了勾股定理,求出點(diǎn)的坐標(biāo),根據(jù)待定系數(shù)法進(jìn)一步求解.【詳解】解:作軸于.設(shè)A點(diǎn)坐標(biāo)為,在中,即,解得(舍去)、;∴點(diǎn)坐標(biāo)為,將代入數(shù)得:.故選:.【考點(diǎn)】此題考查了正比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征和用待定系數(shù)法求函數(shù)解析式,構(gòu)造直角三角形求出點(diǎn)A坐標(biāo)是解題關(guān)鍵,構(gòu)思巧妙,難度不大.6、A【解析】【分析】作AF⊥BC,根據(jù)等腰三角形ABC的性質(zhì)求出AF的長(zhǎng),再根據(jù)黃金分割點(diǎn)的定義求出BE、CD的長(zhǎng)度,得到中DE的長(zhǎng),利用三角形面積公式即可解題.【詳解】解:過(guò)點(diǎn)A作AF⊥BC,∵AB=AC,∴BF=BC=2,在Rt,AF=,∵D是邊的兩個(gè)“黃金分割”點(diǎn),∴即,解得CD=,同理BE=,∵CE=BC-BE=4-(-2)=6-,∴DE=CD-CE=4-8,∴S△ABC===,故選:A.【考點(diǎn)】本題考查了“黃金分割比”的定義、等腰三角形的性質(zhì)、勾股定理的應(yīng)用以及三角形的面積公式,求出DE和AF的長(zhǎng)是解題的關(guān)鍵。二、多選題1、ABD【解析】【分析】根據(jù)圓的性質(zhì)定理逐項(xiàng)排查即可.【詳解】解:A.不在同一條直線上的三點(diǎn)確定一個(gè)圓,故本選項(xiàng)錯(cuò)誤;B.三角形的外心是三角形三邊垂直平分線的交點(diǎn),所以本選項(xiàng)是錯(cuò)誤;C.三角形的外接圓是三條垂直平分線的交點(diǎn),有且只有一個(gè)交點(diǎn),所以任意三角形一定有一個(gè)外接圓,并且只有一個(gè)外接圓,所以本選項(xiàng)是正確的;D.直角三角形的外心在斜邊中點(diǎn)處,故本選項(xiàng)錯(cuò)誤.故選:ABD.【考點(diǎn)】考查確定圓的條件以及三角形外接圓的知識(shí),掌握三角形的外接圓是三條垂直平分線的交點(diǎn)是解題的關(guān)鍵.2、ABD【解析】【分析】利用相似多邊形的對(duì)應(yīng)邊的比相等,對(duì)應(yīng)角相等分析.【詳解】解:要判斷兩個(gè)多邊形是否相似,需要看對(duì)應(yīng)角是否相等,對(duì)應(yīng)邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對(duì)應(yīng)角、對(duì)應(yīng)邊的比不一定相等,故不一定相似,選項(xiàng)A、B、D符合題意;而兩個(gè)正方形,對(duì)應(yīng)角都是90°,對(duì)應(yīng)邊的比也都相等,故一定相似,選項(xiàng)C不符合題意.故選:ABD.【考點(diǎn)】本題考查了相似多邊形的識(shí)別.判定兩個(gè)圖形相似的依據(jù)是:對(duì)應(yīng)邊的比相等,對(duì)應(yīng)角相等.兩個(gè)條件必須同時(shí)具備.3、ABCD【解析】【分析】根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】解:∵a=5,b=12,c=16,∴a2+b2≠c2,∴△ABC不是直角三角形,∴A、B、C、D四個(gè)選項(xiàng)都不對(duì),故選:ABCD.【考點(diǎn)】本題考查的是銳角三角函數(shù)的定義,銳角A的對(duì)邊a與斜邊c的比叫做∠A的正弦;銳角A的鄰邊b與斜邊c的比叫做∠A的余弦;銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切.4、CD【解析】【分析】根據(jù)余弦等于鄰邊比斜邊,可得答案.【詳解】在中,在中,故選:C、D.【考點(diǎn)】本題考查了解直角三角形,掌握直角三角形的邊角之間的關(guān)系是解題的關(guān)鍵.5、ACD【解析】【分析】利用待定系數(shù)法將各點(diǎn)坐標(biāo)兩兩組合代入,求得拋物線解析式為,再根據(jù)對(duì)稱軸直線求解即可得到A選項(xiàng)是正確答案,由拋物線解析式為,令,求解即可得到拋物線與x軸的交點(diǎn)坐標(biāo)(-1,0)和(2,0),從而判斷出B選項(xiàng)不正確,令關(guān)于x的一元二次方程的根的判別式當(dāng),解得,從而得到C選項(xiàng)正確,根據(jù)拋物線圖象的性質(zhì)由,推出,從而推出,得到D選項(xiàng)正確.【詳解】當(dāng)拋物線圖象經(jīng)過(guò)點(diǎn)A和點(diǎn)B時(shí),將A(1,-2)和B(2,-2)分別代入,得,解得,不符合題意,當(dāng)拋物線圖象經(jīng)過(guò)點(diǎn)B和點(diǎn)C時(shí),將B(2,-2)和C(2,0)分別代入,得,此時(shí)無(wú)解,當(dāng)拋物線圖象經(jīng)過(guò)點(diǎn)A和點(diǎn)C時(shí),將A(1,-2)和C(2,0)分別代入得,解得,因此,拋物線經(jīng)過(guò)點(diǎn)A和點(diǎn)C,其解析式為,拋物線的對(duì)稱軸為直線,故A選項(xiàng)正確,因?yàn)?所以,拋物線與x軸的交點(diǎn)坐標(biāo)是(-1,0)和(2,0),故B選項(xiàng)不正確,由得,方程根的判別式當(dāng),時(shí),,當(dāng)時(shí),即,解得,此時(shí)關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,故C選項(xiàng)正確,因?yàn)閽佄锞€與x軸交于點(diǎn)(-1,0)和(2,0),且其圖象開(kāi)口向上,若P(m,n)和Q(m+4,h)都是拋物線上的點(diǎn),且n<0,得,又得,所以h>0,故D選項(xiàng)正確.故選ACD.【考點(diǎn)】本題考查拋物線與x軸的交點(diǎn)?根的判別式?二次函數(shù)的性質(zhì)及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是利用數(shù)形結(jié)合思想,充分掌握求二次函數(shù)的對(duì)稱軸及交點(diǎn)坐標(biāo)的解答方法.6、ACD【解析】【分析】根據(jù)圓內(nèi)接四邊形性質(zhì)直接可判斷A選項(xiàng)正確;利用切線的性質(zhì)可判斷B選項(xiàng)錯(cuò)誤;根據(jù)正多邊形中心角的定義和多邊形外角和可對(duì)判斷C選項(xiàng)正確;根據(jù)切線長(zhǎng)定理可判斷D選項(xiàng)正確.【詳解】A.由圓內(nèi)接四邊形定義得:對(duì)角互補(bǔ)的四邊形是圓內(nèi)接四邊形,A選項(xiàng)正確;B.圓的切線垂直于過(guò)切點(diǎn)的半徑,B選項(xiàng)錯(cuò)誤;C.正多邊形中心角的度數(shù)等于這個(gè)正多邊形一個(gè)外角的度數(shù),都等于,C選項(xiàng)正確;D.過(guò)圓外一點(diǎn)引的圓的兩條切線,則切線長(zhǎng)相等,D選項(xiàng)正確.故選:ACD.【考點(diǎn)】本題考查了正多邊形與圓、切線的性質(zhì)和確定圓的條件,解題關(guān)鍵是熟練掌握有關(guān)的概念.7、CD【解析】【分析】過(guò)P作弦AB⊥OP,連接OA,根據(jù)垂徑定理求出AP=BP,根據(jù)勾股定理求出AP,再求出AB,再得出答案即可.【詳解】解:過(guò)P作弦AB⊥OP,連接OA,如圖,∵OA=5,OP=3,∴,∵OP⊥AB,OP過(guò)圓心O,∴AP=BP=4,即AB=4+4=8,∴過(guò)P點(diǎn)長(zhǎng)度為整數(shù)的弦有4條,①過(guò)P點(diǎn)最短的弦的長(zhǎng)度是8,②過(guò)P點(diǎn)最長(zhǎng)的弦的長(zhǎng)度是10,③還有兩條弦,長(zhǎng)度是9,故答案為:CD.【考點(diǎn)】本題考查了勾股定理和垂徑定理,能熟記垂徑定理是解此題的關(guān)鍵.三、填空題1、120°.【解析】【分析】根據(jù)三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn)即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn),∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點(diǎn)】此題主要考查利用三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn)性質(zhì)進(jìn)行角度求解,熟練掌握,即可解題.2、112【解析】【分析】根據(jù)題意,可知Rt△AEN∽R(shí)t△FAN,從而可以得到對(duì)應(yīng)邊的比相等,從而可以求得正方形的邊長(zhǎng).【詳解】解:∵點(diǎn)M、點(diǎn)N分別是正方形ABCD的邊AD、AB的中點(diǎn),∴,∴AM=AN,由題意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽R(shí)t△FAN,∴,∵AM=AN,∴,解得:AM=140,∴AD=2AM=280(步),∴(米)故答案為:112.【考點(diǎn)】本題考查相似三角形的應(yīng)用、數(shù)學(xué)常識(shí)、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意.利用相似三角形的性質(zhì)和數(shù)形結(jié)合的思想解答.3、或.【解析】【分析】由可變形為,即比較拋物線與直線之間關(guān)系,而直線PQ:與直線AB:關(guān)于與y軸對(duì)稱,由此可知拋物線與直線交于,兩點(diǎn),再觀察兩函數(shù)圖象的上下位置關(guān)系,即可得出結(jié)論.【詳解】解:∵拋物線與直線交于,兩點(diǎn),∴,,∴拋物線與直線交于,兩點(diǎn),觀察函數(shù)圖象可知:當(dāng)或時(shí),直線在拋物線的下方,∴不等式的解集為或.故答案為或.【考點(diǎn)】本題考查了二次函數(shù)與不等式,根據(jù)兩函數(shù)圖象的上下位置關(guān)系找出不等式的解集是解題的關(guān)鍵.4、【解析】【分析】延長(zhǎng)AD交GB于點(diǎn)M,交BC的延長(zhǎng)線于點(diǎn)H,則AHBH,由線段垂直平分線的性質(zhì)得出GA=GB,GD=GC,由SAS證明△AGD△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,先證出∠AGB=∠DGC,由,證出△AGB△DGC,得出比例式,再證出∠AGD=∠EGF,即可得出,即可得出的值.【詳解】解:延長(zhǎng)AD交GB于點(diǎn)M,交BC的延長(zhǎng)線于點(diǎn)H,如圖所示:則AHBH,GE是AB的垂直平分線,GA=GB,同理:GD=GC,在△AGD和△BGC中,,△AGD△BGC(SAS),∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∠AGB=∠AHB=90°,∠AGE=∠AGB=45°,∠AGD=∠BGC,∠AGB=∠DGC=90°,∴△AGB和△DGC是等腰直角三角形,,,又∠AGE=∠DGF,∠AGD=∠EGF,△AGD△EGF,.【考點(diǎn)】本題是相似三角形綜合題目,考查了線段垂直平分線的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、銳角三角函數(shù)等知識(shí),本題難度較大,綜合性強(qiáng),解題的關(guān)鍵是通過(guò)作輔助線綜合運(yùn)用全等三角形和相似三角形的性質(zhì).5、8【解析】【分析】二次函數(shù)的頂點(diǎn)式在x=h時(shí)有最值,a>0時(shí)有最小值,a<0時(shí)有最大值,題中函數(shù),故其在時(shí)有最大值.【詳解】解:∵,∴有最大值,當(dāng)時(shí),有最大值8.故答案為8.【考點(diǎn)】本題考查了二次函數(shù)頂點(diǎn)式求最值,熟練掌握二次函數(shù)的表達(dá)式及最值的確定方法是解題的關(guān)鍵.6、【解析】【分析】先將函數(shù)解析式化為頂點(diǎn)式,再根據(jù)函數(shù)的性質(zhì)解答.【詳解】解:,∵a=1>0,∴當(dāng)x=-2時(shí),二次函數(shù)有最小值-4,故答案為:-4.【考點(diǎn)】此題考查將二次函數(shù)一般式化為頂點(diǎn)式,函數(shù)的性質(zhì),熟練轉(zhuǎn)化函數(shù)解析式的形式及掌握確定最值的方法是解題的關(guān)鍵.7、【解析】【分析】如圖3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性質(zhì)求出DT,BT,AD,即可求出GH的長(zhǎng).【詳解】如圖3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案為:.【考點(diǎn)】本題考查了相似三角形的應(yīng)用,勾股定理的應(yīng)用等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考填空題中的壓軸題.四、解答題1、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時(shí),S有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【解析】【分析】(1)將點(diǎn)E代入直線解析式中,可求出點(diǎn)C的坐標(biāo),將點(diǎn)C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點(diǎn)式,可求出點(diǎn)D的坐標(biāo),設(shè)直線BD的解析式,代入點(diǎn)B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點(diǎn)P的坐標(biāo),則點(diǎn)G的坐標(biāo)可表示,點(diǎn)H的坐標(biāo)可表示,HG長(zhǎng)度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點(diǎn)E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點(diǎn)B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點(diǎn)M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時(shí),S有最大值,最大值為.(3)存在,如圖所示,設(shè)點(diǎn)P的坐標(biāo)為(t,0),則點(diǎn)G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對(duì)應(yīng)點(diǎn)為點(diǎn)F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時(shí),解得t1=0(舍),t2=4,此時(shí)點(diǎn)P(4,0).當(dāng)t2﹣t=﹣t時(shí),解得t1=0(舍),t2=,此時(shí)點(diǎn)P(,0).綜上,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【考點(diǎn)】此題考查了待定系數(shù)法求函數(shù)解析式,點(diǎn)坐標(biāo)轉(zhuǎn)換為線段長(zhǎng)度,幾何圖形與二次函數(shù)結(jié)合的問(wèn)題,最后一問(wèn)推出CG=HG為解題關(guān)鍵.2、(1),;(2);(3);(4)或.【解析】【分析】(1)根據(jù)P點(diǎn)的運(yùn)動(dòng)速度和BD的長(zhǎng)度即可出結(jié)果;(2)畫(huà)出圖象,根據(jù)三角形的相似求出各個(gè)線段長(zhǎng),即可解決;(3)分情況討論,矩形與重疊部分面積即為矩形面積減去△ABC外部的小三角形面積,通過(guò)三角函數(shù)計(jì)算出各邊長(zhǎng)求面積即可;(4)要想使被直線分割成的兩部分能拼成不重疊且無(wú)縫隙的圖形恰好是三角形,則需要被分割的是兩個(gè)至少有一條相等邊長(zhǎng)的直角三角形,或者直線正好過(guò)正方形一條邊的中點(diǎn),分情況畫(huà)圖求解即可.【詳解】解:(1)∵,為的中點(diǎn),∴,P從B運(yùn)動(dòng)到點(diǎn)D所需時(shí)間為1s,由題意可知,;(2)如圖所示,由題意得,∴,∵,,,∴,∴,由四邊形是矩形可知,∠QPD=∠MDP=90°,PQ=DM,即∠APQ=∠BDM=90°,∵∠B=∠B,∠BDM=∠ACB=90°,∴△MDB∽△ACB,∴,即,∴,即∵∠A=∠A,∠APQ=∠ACB=90°,∴△APQ∽△ACB,∴,即,解得;(3)當(dāng)時(shí),如圖,DM交BC于點(diǎn)F,由矩形可知PD∥QM,∴∠FQM=∠B=30°,此時(shí),∴,∴,解得,,同理,,解得,,,當(dāng)時(shí),如圖,DM交BC于點(diǎn)F,QM交BC于E,,由題意可知∠A=60°,,∴,即,,得,∴,∵,∴,,,∴,綜上所述:;(4)如圖所示,當(dāng)Q與C重合時(shí),滿足條件,由前面解題過(guò)程可知此時(shí),當(dāng)PQ=DM時(shí),此時(shí)直線CD正好過(guò)QM的中點(diǎn),滿足條件,此時(shí),當(dāng)直線CD正好過(guò)PQ的中點(diǎn)G時(shí),滿足條件,如圖,由前面計(jì)算可知,則,,解得,綜上所述,或.【考點(diǎn)】本題考查了動(dòng)點(diǎn)問(wèn)題,熟練掌握三角函數(shù),矩形的性質(zhì)是解題的關(guān)鍵.3、(1)27(2)【解析】【分析】(1)根據(jù)t秒時(shí),M、N兩點(diǎn)的運(yùn)動(dòng)路程,分別表示出AM、BM、BN、CN的長(zhǎng)度,由S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN進(jìn)行列式即可得到S關(guān)于t的函數(shù)關(guān)系式,通過(guò)配方即可求得最小值;(2)當(dāng)△DMN為直角三角形時(shí),由∠MDN<90°,分∠NMD或∠MND為90°兩種情況進(jìn)行求解即可得.【詳解】(1)由題意,得AM=tcm,BN=2tcm,則BM=(6-t)cm,CN=(12-2t)cm,∵S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN,∴S=12×6-×12t-(6-t)·2t-×6(12-2t)=t2-6t+36=(t-3)2+27,∵t=3在范圍0<t<6內(nèi),∴S的最小值為27cm2;(2)當(dāng)△DMN為直角三角形時(shí),∵∠MDN<90°,∴可能∠NMD或∠MND為90°,當(dāng)∠NMD=90°時(shí),DN2=DM2+MN2,∴(12-2t)2+62=122+t2+(6-t)2+(2t)2,解得t=0或-18,不在范圍0<t<6內(nèi),∴不可能;當(dāng)∠MND=90°時(shí),DM2=DN2+MN2,∴122+t2=(12-2t)2+62+(6-t)2+(2t)2,解得t=或6,(6不在范圍0<t<6內(nèi)舍),∴S=(-3)2+27=cm2.【考點(diǎn)】本題考查了二次函數(shù)的應(yīng)用,涉及矩形的性質(zhì)、三角形面積、二次函數(shù)的性質(zhì)、勾股定理的應(yīng)用等知識(shí),熟練掌握和靈活應(yīng)用相關(guān)知識(shí)是解題的關(guān)鍵.4、避雷針BC的長(zhǎng)度為4.8米.【解析】【分析】解直角三角形求出CD,BD,根據(jù)BC=CD-BD求解即可.【詳解】解:在Rt△ABD中,∵,∴1.48=,∵AD=80米,∴BD=118.4(米),在Rt△CAD中,∵tan∠CAD=,∴1.54=,∴CD=123.2(米),∴BC=CD-BD=4.8(米)答:避雷針BC的長(zhǎng)度為4.8米.【考點(diǎn)】本題考查解直角三角形的應(yīng)用,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.5、(1);(2);(3)【解析】【分析】(1)由拋物線的對(duì)稱軸為直線,即可求得點(diǎn)E的坐標(biāo);在y=ax2﹣3ax﹣4a(a<0)令y=0可得關(guān)于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點(diǎn)A的坐標(biāo);(2)如圖1,設(shè)⊙E與直線BC相切于點(diǎn)D,連接DE,則DE⊥BC,結(jié)合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,這樣由tan∠OBC=即可列出關(guān)于a的方程,解方程求得a的值即可得到拋物線的解析式;(3)由折疊的性質(zhì)和MN∥y軸可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(0,3)可得線段BC=5,直線BC的解析式為y=﹣x+3,由此即可得到M、N的坐標(biāo)分別為(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,這樣由sin∠BCO=即可解得CM=m,然后分點(diǎn)N在直線BC的上方和下方兩種情況用含m的代數(shù)式表達(dá)出MN的長(zhǎng)度,結(jié)合MN=CM即可列出關(guān)于m的方程,解方程即可求得對(duì)應(yīng)的m的值,從而得到對(duì)應(yīng)的點(diǎn)Q的坐標(biāo).【詳解】解:(1)∵對(duì)稱軸x=,∴點(diǎn)E坐
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 護(hù)理中級(jí):護(hù)理質(zhì)量管理
- 嬰兒游泳與免疫系統(tǒng)護(hù)理
- 第二章第四節(jié)自然災(zāi)害
- 房地產(chǎn) -洛??煺辙k公室2025年第三季度 Snapshot Office Lausanne Q3 2025
- 金融數(shù)據(jù)治理與合規(guī)體系建設(shè)
- 基于IoT的智能配送
- 基層衛(wèi)生人才定向培養(yǎng)模式
- 地緣政治風(fēng)險(xiǎn)與股市波動(dòng)
- 自然辨證題目及答案
- 2026 年中職金屬與非金屬礦開(kāi)采技術(shù)(采礦操作)試題及答案
- DB65-T 4900-2025 新能源發(fā)電升壓站驗(yàn)收技術(shù)規(guī)范
- 農(nóng)村集體經(jīng)濟(jì)發(fā)展講座
- 2025運(yùn)動(dòng)戶外圈層人群洞察白皮書(shū)
- 2025廣西公需科目培訓(xùn)考試答案(90分)一區(qū)兩地一園一通道建設(shè)人工智能時(shí)代的機(jī)遇與挑戰(zhàn)
- 酸洗鈍化工安全教育培訓(xùn)手冊(cè)
- 汽車發(fā)動(dòng)機(jī)測(cè)試題(含答案)
- IPC6012DA中英文版剛性印制板的鑒定及性能規(guī)范汽車要求附件
- 消除母嬰三病傳播培訓(xùn)課件
- 學(xué)校餐費(fèi)退費(fèi)管理制度
- T/CUPTA 010-2022共享(電)單車停放規(guī)范
- 設(shè)備修理工培訓(xùn)體系
評(píng)論
0/150
提交評(píng)論