基礎(chǔ)強(qiáng)化山東省龍口市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)練習(xí)試題(含詳解)_第1頁(yè)
基礎(chǔ)強(qiáng)化山東省龍口市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)練習(xí)試題(含詳解)_第2頁(yè)
基礎(chǔ)強(qiáng)化山東省龍口市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)練習(xí)試題(含詳解)_第3頁(yè)
基礎(chǔ)強(qiáng)化山東省龍口市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)練習(xí)試題(含詳解)_第4頁(yè)
基礎(chǔ)強(qiáng)化山東省龍口市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)練習(xí)試題(含詳解)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省龍口市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編章節(jié)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底墻到左墻角的距離為1.5m,頂端距離地面2m,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面0.7m,那么小巷的寬度為(

)A.3.2m B.3.5m C.3.9m D.4m2、如圖,正方形ABCD中,AB=12,將△ADE沿AE對(duì)折至△AEF,延長(zhǎng)EF交BC于點(diǎn)G,G剛好是BC邊的中點(diǎn),則ED的長(zhǎng)是()A.2 B.3 C.4 D.53、如圖,將直角三角形紙片沿AD折疊,使點(diǎn)B落在AC延長(zhǎng)線上的點(diǎn)E處.若AC=3,BC=4,則圖中陰影部分的面積是()A. B. C. D.4、在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別是1,2,3,正放置的四個(gè)正方形的面積依次是S1,S2,S3,S4,則S1+S2+S3+S4=()A.4 B.5 C.6 D.75、如圖是一個(gè)三級(jí)臺(tái)階,它的每一級(jí)的長(zhǎng)、寬、高分別為20dm、3dm、2dm,A和B是這個(gè)臺(tái)階上兩個(gè)相對(duì)的端點(diǎn),點(diǎn)A處有一只螞蟻,想到點(diǎn)B處去吃可口的食物,則螞蟻沿著臺(tái)階面爬行到點(diǎn)B的最短路程為(

)A.20dm B.25dm C.30dm D.35dm6、如圖所示,將一根長(zhǎng)為24cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在外面的長(zhǎng)為hcm,則h的取值范圍是()A.0<h≤11 B.11≤h≤12 C.h≥12 D.0<h≤127、《九章算術(shù)》“勾股”章有一題:“今有戶(hù)高多于廣六尺八寸,兩隅相去適一丈.問(wèn)戶(hù)高、廣各幾何.”大意是說(shuō):已知長(zhǎng)方形門(mén)的高比寬多6尺8寸,門(mén)的對(duì)角線長(zhǎng)1丈,那么門(mén)的高和寬各是多少(1丈=10尺,1尺=10寸)?若設(shè)門(mén)的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=1002第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個(gè)問(wèn)題:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸(丈、尺是長(zhǎng)度單位,1丈10尺)其大意為:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端B恰好到達(dá)池邊的水面D處,問(wèn)水的深度是多少?則水深DE為_(kāi)____尺.2、如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它爬的最短距離是_____.3、如圖,分別以此直角三角形的三邊為直徑在三角形的外部畫(huà)半圓,,,則_________.4、在一棵樹(shù)的5米高B處有兩個(gè)猴子為搶吃池塘邊水果,一只猴子爬下樹(shù)跑到A處(離樹(shù)10米)的池塘邊.另一只爬到樹(shù)頂D后直接躍到A處,距離以直線計(jì)算,如果兩只猴子所經(jīng)過(guò)的距離相等,則這棵樹(shù)高_(dá)______米.5、如圖所示,在四邊形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,則∠ACB的度數(shù)等于_____.6、如圖,在的網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都為1,的頂點(diǎn)、、都在格點(diǎn)上,點(diǎn)為邊的中點(diǎn),則線段的長(zhǎng)為_(kāi)_______.7、對(duì)角線互相垂直的四邊形叫做“垂美”四邊形,現(xiàn)有如圖所示的“垂美”四邊形ABCD,對(duì)角線AC、BD交于點(diǎn)O.若AD=3,BC=5,則____________.8、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來(lái),蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為_(kāi)_______米三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,高速公路上有A,B兩點(diǎn)相距10km,C,D為兩村莊,已知DA=4km,CB=6km,DA⊥AB于點(diǎn)A,CB⊥AB于B,現(xiàn)要在AB上建一個(gè)服務(wù)站E,使得C,D兩村莊到E站的距離相等,求BE的長(zhǎng).2、勾股定理被譽(yù)為“幾何明珠”,在數(shù)學(xué)的發(fā)展歷程中占有舉足輕重的地位.它是初中數(shù)學(xué)中的重要知識(shí)點(diǎn)之一,也是初中學(xué)生以后解決數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題中常常運(yùn)用到的重要知識(shí),因此學(xué)好勾股定理非常重要.學(xué)習(xí)數(shù)學(xué)“不僅要知其然,更要知其所以然”,所以,我們要學(xué)會(huì)勾股定理的各種證明方法.請(qǐng)你利用如圖圖形證明勾股定理:已知:如圖,四邊形ABCD中,BD⊥CD,AE⊥BD于點(diǎn)E,且△ABE≌△BCD.求證:AB2=BE2+AE2.3、已知,如圖,,C為上一點(diǎn),與相交于點(diǎn)F,連接.,.(1)求證:;(2)已知,,,求的長(zhǎng)度.4、如圖,某海岸線MN的方向?yàn)楸逼珫|75°,甲,乙兩船分別向海島C運(yùn)送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.5、如圖是三個(gè)全等的直角三角形紙片,且,按如圖的三種方法分別將其折疊,使折痕(圖中虛線)過(guò)其中的一個(gè)頂點(diǎn),且使該頂點(diǎn)所在角的兩邊重合,記折疊后不重疊部分面積分別為.(1)若,求的值.(2)若,求①單個(gè)直角三角形紙片的面積是多少?②此時(shí)的值是多少?6、閱讀下面材料:小明遇到這樣一個(gè)問(wèn)題:∠MBN=30°,點(diǎn)A為射線BM上一點(diǎn),且AB=4,點(diǎn)C為射線BN上動(dòng)點(diǎn),連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當(dāng)AC⊥BN時(shí),求BD的長(zhǎng).小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對(duì)全等的三角形,再利用∠EBC=90°,從而將問(wèn)題解決(如圖1).請(qǐng)回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長(zhǎng)為.(2)動(dòng)點(diǎn)C在射線BN上運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到AC時(shí),求BD的長(zhǎng);(3)動(dòng)點(diǎn)C在射線BN上運(yùn)動(dòng),求△ABD周長(zhǎng)最小值.7、點(diǎn)P到y(tǒng)軸的距離與它到點(diǎn)A(-8,2)的距離都等于13,求點(diǎn)P的坐標(biāo)。-參考答案-一、單選題1、C【解析】【分析】如圖,在Rt△ACB中,先根據(jù)勾股定理求出AB,然后在Rt△A′BD中根據(jù)勾股定理求出BD,進(jìn)而可得答案.【詳解】解:如圖,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故選:C.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,正確理解題意、熟練掌握勾股定理是解題的關(guān)鍵.2、C【解析】【分析】連接AG,證明△ABG≌△AFG,得到FG=BG,△ADE沿AE對(duì)折至△AEF,則EF=DE,設(shè)DE=x,則EF=x,EC=12-x,則Rt△EGC中根據(jù)勾股定理列方程可求出DE的值.【詳解】如圖,連接AG,∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=12.∵△ADE沿AE對(duì)折至△AEF,∴EF=DE,AF=AD,∵AF=AD,AB=AD,∴AF=AB,又AG是公共邊,∴△ABG≌△AFG(HL),∵G剛好是BC邊的中點(diǎn),∴BG=FG=,設(shè)DE=x,則EF=x,EC=12-x,在Rt△EGC中,根據(jù)勾股定理列方程:62+(12-x)2=(x+6)2解得:x=4.所以ED的長(zhǎng)是4,答案選C.【考點(diǎn)】本題考查了正方形和全等三角形的綜合知識(shí),根據(jù)勾股定理列方程是本題的解題關(guān)鍵.3、B【解析】【分析】由勾股定理求出AB,設(shè)CD=x,則BD=4-x,根據(jù)求出x得到CD的長(zhǎng),利用面積求出答案.【詳解】解:∵∠ACB=90°,∴,由折疊得AE=AB=5,DE=BD,設(shè)CD=x,則BD=4-x,在△DCE中,∠DCE=90°,CE=AE-AC=5-3=2,∵,∴,解得x=1.5,∴CD=1.5,∴圖中陰影部分的面積是,故選:B.【考點(diǎn)】此題考查了折疊的性質(zhì),勾股定理,熟記勾股定理的計(jì)算公式是解題的關(guān)鍵.4、A【解析】【詳解】解:由勾股定理的幾何意義可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故選A.【考點(diǎn)】勾股定理包含幾何與數(shù)論兩個(gè)方面,幾何方面,一個(gè)直角三角形的斜邊的平方等于另外兩邊的平方和.這里,邊的平方的幾何意義就是以該邊為邊的正方形的面積.5、B【解析】【分析】先將圖形平面展開(kāi),再用勾股定理根據(jù)兩點(diǎn)之間線段最短進(jìn)行解答.【詳解】三級(jí)臺(tái)階平面展開(kāi)圖為長(zhǎng)方形,長(zhǎng)為20dm,寬為(2+3)×3dm,則螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程是此長(zhǎng)方形的對(duì)角線長(zhǎng).可設(shè)螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程為xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故選B.【考點(diǎn)】本題考查了平面展開(kāi)——最短路徑問(wèn)題,用到臺(tái)階的平面展開(kāi)圖,只要根據(jù)題意判斷出長(zhǎng)方形的長(zhǎng)和寬即可解答.6、B【解析】【分析】根據(jù)題意畫(huà)出圖形,先找出h的值為最大和最小時(shí)筷子的位置,再根據(jù)勾股定理解答即可.【詳解】解:當(dāng)筷子與杯底垂直時(shí)h最大,h最大=24﹣12=12cm.當(dāng)筷子與杯底及杯高構(gòu)成直角三角形時(shí)h最小,如圖所示:此時(shí),AB===13cm,∴h=24﹣13=11cm.∴h的取值范圍是11cm≤h≤12cm.故選:B.【考點(diǎn)】本題考查了勾股定理的實(shí)際應(yīng)用問(wèn)題,解答此題的關(guān)鍵是根據(jù)題意畫(huà)出圖形找出何時(shí)h有最大及最小值,同時(shí)注意勾股定理的靈活運(yùn)用,有一定難度.7、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設(shè)門(mén)的寬為x寸,則門(mén)的高度為(x+68)寸,利用勾股定理及門(mén)的對(duì)角線長(zhǎng)1丈(100寸),即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設(shè)門(mén)的寬為x寸,則門(mén)的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用、由實(shí)際問(wèn)題抽象出一元二次方程,準(zhǔn)確計(jì)算是解題的關(guān)鍵.二、填空題1、12【解析】【分析】設(shè)水深為h尺,則蘆葦長(zhǎng)為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長(zhǎng)為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點(diǎn)】本題主要考查勾股定理的應(yīng)用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.2、25【解析】【分析】先將圖形平面展開(kāi),再用勾股定理根據(jù)兩點(diǎn)之間線段最短進(jìn)行解答.【詳解】解:如圖所示:臺(tái)階平面展開(kāi)圖為長(zhǎng)方形,根據(jù)題意得:,,則螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程是此長(zhǎng)方形的對(duì)角線長(zhǎng).由勾股定理得:,即,∴,故答案為:25.【考點(diǎn)】本題主要考查了平面展開(kāi)圖—最短路徑問(wèn)題,用到臺(tái)階的平面展開(kāi)圖,只要根據(jù)題意判斷出長(zhǎng)方形的長(zhǎng)和寬即可解答.3、【解析】【分析】根據(jù)題意設(shè)直角三角形的三邊為,分別表示出,得出,進(jìn)而即可求解.【詳解】解:設(shè)直角三角形的三邊為,如圖,,,,,S1=18π,S3=50π,故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.4、【解析】【分析】由題意知AD+DB=BC+CA,設(shè)BD=x,則AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,樹(shù)高CD=(5+x)米即可.【詳解】解:由題意知AD+DB=BC+CA,且CA=10米,BC=5米,設(shè)BD=x,則AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故樹(shù)高為CD=5+x=7.5(米),答:樹(shù)高為7.5米.故答案為:7.5.【考點(diǎn)】本題考查了勾股定理在實(shí)際生活中的應(yīng)用,本題中找到AD+DB=BC+CA的等量關(guān)系,并根據(jù)勾股定理列方程求解是解題的關(guān)鍵.5、90°##90度【解析】【分析】根據(jù)三角形面積公式求出AC=4,根據(jù)勾股定理逆定理即可求出∠ACB=90°.【詳解】解:∵DE⊥AC于E,DE=3,S△DAC=6,∴×AC×DE=6,∴AC=4,∴,∵AB=5,∴AB2=25,∴,∴∠ACB=90°.故答案為:90°【考點(diǎn)】本題考查了勾股定理逆定理和三角形的面積應(yīng)用,熟練掌握勾股定理逆定理是解題關(guān)鍵.6、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點(diǎn)O為AB邊的中點(diǎn),∴CO=AB=2.5,故答案為:2.5.【考點(diǎn)】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識(shí),熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.7、34【解析】【分析】在Rt△COB和Rt△AOB中,根據(jù)勾股定理得BO2+CO2=CB2,OD2+OA2=AD2,進(jìn)一步得BO2+CO2+OD2+OA2=9+25,再根據(jù)AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34.【詳解】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根據(jù)勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34;故答案為:34.【考點(diǎn)】本題考查勾股定理的應(yīng)用,熟練掌握勾股定理在實(shí)際問(wèn)題中的應(yīng)用,從題中抽象出勾股定理這一數(shù)學(xué)模型是解題關(guān)鍵.8、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,從現(xiàn)實(shí)圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.三、解答題1、4km【解析】【分析】根據(jù)題意設(shè)出BE的長(zhǎng)為xkm,再由勾股定理列出方程求解即可.【詳解】解:設(shè)BE=xkm,則AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由題意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4.所以,EB的長(zhǎng)是4km.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解本題的關(guān)鍵.2、證明見(jiàn)解析【解析】【分析】連接AC,根據(jù)四邊形ABCD面積的兩種不同表示形式,結(jié)合全等三角形的性質(zhì)即可求解.【詳解】解:連接AC,∵△ABE≌△BCD,∴AB=BC,AE=BD,BE=CD,∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴S四邊形ABCD=,又∵S四邊形ABCD=,,∴AB2=AE2+BD?BE-BE?DE,∴AB2=AE2+(BD-DE)?BE,即AB2=BE2+AE2.【考點(diǎn)】本題考查了勾股定理的證明,解題時(shí),利用了全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等的性質(zhì).3、(1)證明見(jiàn)解析;(2)【解析】【分析】(1)先證明再結(jié)合證明從而可得結(jié)論;(2)先證明再證明從而利用等面積法可得的長(zhǎng)度.【詳解】解:(1),而(2),,,【考點(diǎn)】本題考查的是三角形的外角的性質(zhì),平行線的性質(zhì)與判定,勾股定理的逆定理的應(yīng)用,證明是解本題的關(guān)鍵.4、【解析】【分析】過(guò)點(diǎn)C作CD⊥AM垂足為D,設(shè)CD=x,根據(jù)直角三角形的性質(zhì)求可得AC=2x、BD=BC=x,再利用勾股定理可求得x,進(jìn)而求得AC的長(zhǎng).【詳解】解:過(guò)點(diǎn)C作CD⊥AM垂足為D,∴∠CAD=75°-45°=30°,∠CBD=75°-30°=30°,設(shè)CD=x∵在Rt△ACD中,∠CAD=75°-45°=30°∴AC=2x∵在Rt△BCD中,∠CBD=45°,BC=30∴BD=BC=x∴,解得x=∴AC=2x=.答:港口A到海島C的距離是海里.【考點(diǎn)】本題主要考查了直角三角形的性質(zhì)、勾股定理等知識(shí)點(diǎn),掌握直角三角形的邊角關(guān)系是正確解答的前提,作垂線構(gòu)造直角三角形是解決問(wèn)題的關(guān)鍵.5、(1)(2)①36;②【解析】【分析】(1)設(shè)DE=CE=x,則BE=4-x,依據(jù)S△ABE=AB×DE=BE×AC,即可得到x的值,進(jìn)而得出S1的值.(2)①如圖1,依據(jù)S△ABE=AB×DE=BE×AC,即可得到DE=x,進(jìn)而得出S1=x2;如圖2,依據(jù)S△ABN=AB×HN=AN×BC,即可得到EN=x,進(jìn)而得出S2=x2,再根據(jù)S1+S2=13,即可得到x2=6,進(jìn)而得出單個(gè)直角三角形紙片的面積.②如圖3,由折疊可得,AC=CF=3x,所以BF=BC-CF=4x-3x=x,則S3=S△CMF=S△ACM,所以S3=,即可求解.(1)解:∵AC∶BC∶AB=3∶4∶5,AC=3,∴BC=4,AB=5,由折疊可得,DE=CE,∠ADE=∠C=90°,AD=AC=3,設(shè)DE=CE=x,則BE=4﹣x,∵S△ABE=AB×DE=BE×AC,∴AB×DE=BE×AC,即5x=3(4﹣x),解得x=,∴S1=BD×DE==.(2)解:由AC:BC:AB=3:4:5,可設(shè)AC=3x,BC=4x,AB=5x,①如圖1,由折疊可得,AD=AC=3x,BD=5x-3x=2x,DE=CE,∠ADE=∠C=90°,∵S△ABE=AB×DE=BE×AC,∴AB×DE=BE×AC,即5x×DE=(4x-DE)×3x,解得DE=x,∴S1=BD×DE=×2x×x=x2;如圖2,由折疊可得,BC=BH=4x,HN=CN,∴AH=x,AN=3x-HN,∵S△ABN=AB×HN=AN×BC,∴AB×HN=AN×BC,即5x×HN=(3x-HN)×4x,解得HN=x,∴S2=AH×HN=×x×x=x2,∵S1+S2=13,∴x2+x2=13,解得x2=6,∴S△ABC=×3x×4x=6x2=36.答:?jiǎn)蝹€(gè)直角三角形紙片的面積是36;②如圖3,由折疊可得,AC=CF=3x,∴BF=BC-CF=4x-3x=x,∴S3=S△CMF=S△ACM,∴S3==,答:此時(shí)S3的值為.【考點(diǎn)】本題主要考查了翻折變換(折疊問(wèn)題),折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.解決問(wèn)題的關(guān)鍵是利用面積法求得某些線段的長(zhǎng)度.6、(1)ABD,ACE,;(2)BD的長(zhǎng)為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長(zhǎng)度;(2)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即B

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論