人教版初一數(shù)學(xué)下冊名校課堂訓(xùn)練:期末幾何壓軸題測試培優(yōu)試題_第1頁
人教版初一數(shù)學(xué)下冊名校課堂訓(xùn)練:期末幾何壓軸題測試培優(yōu)試題_第2頁
人教版初一數(shù)學(xué)下冊名校課堂訓(xùn)練:期末幾何壓軸題測試培優(yōu)試題_第3頁
人教版初一數(shù)學(xué)下冊名校課堂訓(xùn)練:期末幾何壓軸題測試培優(yōu)試題_第4頁
人教版初一數(shù)學(xué)下冊名校課堂訓(xùn)練:期末幾何壓軸題測試培優(yōu)試題_第5頁
已閱讀5頁,還剩49頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

一、解答題1.如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(﹣3,2).(1)直接寫出點(diǎn)E的坐標(biāo);(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動.若點(diǎn)P的速度為每秒1個單位長度,運(yùn)動時間為t秒,回答下列問題:①當(dāng)t=秒時,點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);②求點(diǎn)P在運(yùn)動過程中的坐標(biāo),(用含t的式子表示,寫出過程);③當(dāng)點(diǎn)P運(yùn)動到CD上時,設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,試問x,y,z之間的數(shù)量關(guān)系能否確定?若能,請用含x,y的式子表示z,寫出過程;若不能,說明理由.2.如圖1,點(diǎn)在直線、之間,且.(1)求證:;(2)若點(diǎn)是直線上的一點(diǎn),且,平分交直線于點(diǎn),若,求的度數(shù);(3)如圖3,點(diǎn)是直線、外一點(diǎn),且滿足,,與交于點(diǎn).已知,且,則的度數(shù)為______(請直接寫出答案,用含的式子表示).3.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點(diǎn),點(diǎn)M,點(diǎn)N分別是直線CD,EF上一點(diǎn)(不與P,Q重合),連接PM,MN.(1)點(diǎn)M,N分別在射線QC,QF上(不與點(diǎn)Q重合),當(dāng)∠APM+∠QMN=90°時,①試判斷PM與MN的位置關(guān)系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過N點(diǎn)作AB的平行線)(2)點(diǎn)M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關(guān)系.(注:此題說理時不能使用沒有學(xué)過的定理)4.已知直線,點(diǎn)P為直線、所確定的平面內(nèi)的一點(diǎn).(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點(diǎn)E在射線上,過點(diǎn)E作,作,點(diǎn)G在直線上,作的平分線交于點(diǎn)H,若,,求的度數(shù).5.綜合與探究(問題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(1)如圖1,,點(diǎn)、分別為直線、上的一點(diǎn),點(diǎn)為平行線間一點(diǎn),請直接寫出、和之間的數(shù)量關(guān)系;(問題遷移)(2)如圖2,射線與射線交于點(diǎn),直線,直線分別交、于點(diǎn)、,直線分別交、于點(diǎn)、,點(diǎn)在射線上運(yùn)動,①當(dāng)點(diǎn)在、(不與、重合)兩點(diǎn)之間運(yùn)動時,設(shè),.則,,之間有何數(shù)量關(guān)系?請說明理由.②若點(diǎn)不在線段上運(yùn)動時(點(diǎn)與點(diǎn)、、三點(diǎn)都不重合),請你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關(guān)系.6.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點(diǎn)在的上方,問,,之間有何數(shù)量關(guān)系?請說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點(diǎn),用含有的式子表示的度數(shù).7.?dāng)?shù)學(xué)中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的運(yùn)算,記為,如,則,則.①根據(jù)定義,填空:_________,__________.②若有如下運(yùn)算性質(zhì):.根據(jù)運(yùn)算性質(zhì)填空,填空:若,則__________;___________;③下表中與數(shù)x對應(yīng)的有且只有兩個是錯誤的,請直接找出錯誤并改正.x1.5356891227錯誤的式子是__________,_____________;分別改為__________,_____________.8.閱讀理解:一個多位數(shù),如果根據(jù)它的位數(shù),可以從左到右分成左、中、右三個數(shù)位相同的整數(shù),其中a代表這個整數(shù)分出來的左邊數(shù),b代表的這個整數(shù)分出來的中間數(shù),c代表這個整數(shù)分出來的右邊數(shù),其中a,b,c數(shù)位相同,若b﹣a=c﹣b,我們稱這個多位數(shù)為等差數(shù).例如:357分成了三個數(shù)3,5,7,并且滿足:5﹣3=7﹣5;413223分成三個數(shù)41,32,23,并且滿足:32﹣41=23﹣32;所以:357和413223都是等差數(shù).(1)判斷:148等差數(shù),514335等差數(shù);(用“是”或“不是”填空)(2)若一個三位數(shù)是等差數(shù),試說明它一定能被3整除;(3)若一個三位數(shù)T是等差數(shù),且T是24的倍數(shù),求該等差數(shù)T.9.閱讀材料,解答問題:如果一個四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱這個四位數(shù)“依賴數(shù)”,例如,自然數(shù)2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依賴數(shù)”.(1)請直接寫出最小的四位依賴數(shù);(2)若四位依賴數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結(jié)果除以7余3,這樣的數(shù)叫做“特色數(shù)”,求所有特色數(shù).(3)已知一個大于1的正整數(shù)m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均為正整數(shù)),在m的所有表示結(jié)果中,當(dāng)nq﹣np取得最小時,稱“m=pq+n4”是m的“最小分解”,此時規(guī)定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因?yàn)?×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色數(shù)”的F(m)的最大值.10.如圖1,把兩個邊長為1的小正方形沿對角線剪開,所得的4個直角三角形拼成一個面積為2的大正方形.由此得到了一種能在數(shù)軸上畫出無理數(shù)對應(yīng)點(diǎn)的方法.(1)圖2中A、B兩點(diǎn)表示的數(shù)分別為___________,____________;(2)請你參照上面的方法:①把圖3中的長方形進(jìn)行剪裁,并拼成一個大正方形.在圖3中畫出裁剪線,并在圖4的正方形網(wǎng)格中畫出拼成的大正方形,該正方形的邊長___________.(注:小正方形邊長都為1,拼接不重疊也無空隙)②在①的基礎(chǔ)上,參照圖2的畫法,在數(shù)軸上分別用點(diǎn)M、N表示數(shù)a以及.(圖中標(biāo)出必要線段的長)11.閱讀理解:一個多位數(shù),如果根據(jù)它的位數(shù),可以從左到右分成左、中、右三個數(shù)位相同的整數(shù),其中a代表這個整數(shù)分出來的左邊數(shù),b代表的這個整數(shù)分出來的中間數(shù),c代表這個整數(shù)分出來的右邊數(shù),其中a,b,c數(shù)位相同,若b﹣a=c﹣b,我們稱這個多位數(shù)為等差數(shù).例如:357分成了三個數(shù)3,5,7,并且滿足:5﹣3=7﹣5;413223分成三個數(shù)41,32,23,并且滿足:32﹣41=23﹣32;所以:357和413223都是等差數(shù).(1)判斷:148等差數(shù),514335等差數(shù);(用“是”或“不是”填空)(2)若一個三位數(shù)是等差數(shù),試說明它一定能被3整除;(3)若一個三位數(shù)T是等差數(shù),且T是24的倍數(shù),求該等差數(shù)T.12.閱讀材料:求的值.解:設(shè)①,將等式①的兩邊同乘以2,得②,用②-①得,即.即.請仿照此法計(jì)算:(1)請直接填寫的值為______;(2)求值;(3)請直接寫出的值.13.已知、兩點(diǎn)的坐標(biāo)分別為,,將線段水平向右平移到,連接,,得四邊形,且.(1)點(diǎn)的坐標(biāo)為______,點(diǎn)D的坐標(biāo)為______;(2)如圖1,軸于,上有一動點(diǎn),連接、,求最小時點(diǎn)位置及其坐標(biāo),并說明理由;(3)如圖2,為軸上一點(diǎn),若平分,且于,.求與之間的數(shù)量關(guān)系.14.綜合與實(shí)踐課上,同學(xué)們以“一個直角三角形和兩條平行線”為背景開展數(shù)學(xué)活動,如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學(xué)們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.(3)如圖3,若∠A=30°,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請寫出與的數(shù)量關(guān)系并說明理由.15.在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,過點(diǎn)作直線軸,垂足為,交線段于點(diǎn).(1)如圖1,過點(diǎn)作,垂足為,連接.①填空:的面積為______;②點(diǎn)為直線上一動點(diǎn),當(dāng)時,求點(diǎn)的坐標(biāo);(2)如圖2,點(diǎn)為線段延長線上一點(diǎn),連接,,線段交于點(diǎn),若,請直接寫出點(diǎn)的坐標(biāo)為______.16.如果x是一個有理數(shù),我們定義x表示不小于x的最小整數(shù).如3.24,2.62,55,66.由定義可知,任意一個有理數(shù)都能寫成xxb的形式(0≤b<1).(1)直接寫出x與x,x1的大小關(guān)系;提示1:用“不完全歸納法”推導(dǎo)x與x,x1的大小關(guān)系;提示2:用“代數(shù)推理”的方法推導(dǎo)x與x,x1的大小關(guān)系.(2)根據(jù)(1)中的結(jié)論解決下列問題:①直接寫出滿足3m74的m取值范圍;②直接寫出方程3.5n22n1的解..17.如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn),與y軸交于點(diǎn),且(1)求;(2)若為直線上一點(diǎn).①的面積不大于面積的,求P點(diǎn)橫坐標(biāo)x的取值范圍;②請直接寫出用含x的式子表示y.(3)已知點(diǎn),若的面積為6,請直接寫出m的值.18.如圖1,以直角的直角頂點(diǎn)為原點(diǎn),以,所在直線為軸和軸建立平面直角坐標(biāo)系,點(diǎn),,并且滿足.(1)直接寫出點(diǎn),點(diǎn)的坐標(biāo);(2)如圖1,坐標(biāo)軸上有兩動點(diǎn),同時出發(fā),點(diǎn)從點(diǎn)出發(fā)沿軸負(fù)方向以每秒2個單位長度的速度勻速運(yùn)動,點(diǎn)從點(diǎn)出發(fā)沿軸正方向以每秒個單位長度的速度勻速運(yùn)動,當(dāng)點(diǎn)到達(dá)點(diǎn)整個運(yùn)動隨之結(jié)束;線段的中點(diǎn)的坐標(biāo)是,設(shè)運(yùn)動時間為秒.是否存在,使得與的面積相等?若存在,求出的值;若不存在,說明理由;(3)如圖2,在(2)的條件下,若,點(diǎn)是第二象限中一點(diǎn),并且平分,點(diǎn)是線段上一動點(diǎn),連接交于點(diǎn),當(dāng)點(diǎn)在上運(yùn)動的過程中,探究,,之間的數(shù)量關(guān)系,直接寫出結(jié)論.19.學(xué)校將20××年入學(xué)的學(xué)生按入學(xué)年份、年級、班級、班內(nèi)序號的順序給每一位學(xué)生編號,如2015年入學(xué)的8年級3班的46號學(xué)生的編號為15080346.張山同學(xué)模仿二維碼的方式給學(xué)生編號設(shè)計(jì)了一套身份識別系統(tǒng),在5×5的正方形風(fēng)格中,黑色正方形表示數(shù)字1,白色正方形表示數(shù)字0.我們把從上往下數(shù)第i行、從左往右數(shù)第j列表示的數(shù)記為aij,(其中,i、j=1,2,3,4,5),規(guī)定Ai=16ai1+8ai2+4ai3+2ai4+ai5.(1)若A1表示入學(xué)年份,A2表示所在年級,A3表示所在班級,A4表示編號的十位數(shù)字,A5表示編號的個位數(shù)字.①圖1是張山同學(xué)的身份識別圖案,請直接寫出張山同學(xué)的編號;②請?jiān)趫D2中畫出2018年入學(xué)的9年級5班的39號同學(xué)的身份識別圖案;(2)張山同學(xué)又設(shè)計(jì)了一套信息加密系統(tǒng),其中A1表示入學(xué)年份加8,A2表示所在年級的數(shù)減6再加上所在班級的數(shù),A3表示所在年級的數(shù)乘2后減3再減所在班級的數(shù),將編號(班內(nèi)序號)的末兩位單列出來,作為一個兩位數(shù),個位與十位數(shù)字對換后再加2,所得結(jié)果的十位數(shù)字用A4表示、個位數(shù)字用A5表示.例如:2018年9年級5班的39號同學(xué),其加密后的身份識別圖案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A4=9,A5=5,所以其加密后的身份識別(26081095)圖案如圖3所示.圖4是李思同學(xué)加密后的身份識別圖案,請求出李思同學(xué)的編號.20.某校規(guī)劃在一塊長AD為18m、寬AB為13m的長方形場地ABCD上,設(shè)計(jì)分別與AD,AB平行的橫向通道和縱向通道,其余部分鋪上草皮,如圖所示,若設(shè)計(jì)三條通道,一條橫向,兩條縱向,且它們的寬度相等,其余六塊草坪相同,其中一塊草坪兩邊之比AM∶AN=8∶9,問通道的寬是多少?21.每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機(jī)器,現(xiàn)有甲、乙兩種型號的機(jī)器可選,其中每臺的價格、產(chǎn)量如下表:甲型機(jī)器乙型機(jī)器價格(萬元/臺)ab產(chǎn)量(噸/月)240180經(jīng)調(diào)查:購買一臺甲型機(jī)器比購買一臺乙型機(jī)器多12萬元,購買2臺甲型機(jī)器比購買3臺乙型機(jī)器多6萬元.(1)求a、b的值;(2)若該公司購買新機(jī)器的資金不超過216萬元,請問該公司有哪幾種購買方案?(3)在(2)的條件下,若公司要求每月的產(chǎn)量不低于1890噸,請你為該公司設(shè)計(jì)一種最省錢的購買方案.22.閱讀下面資料:小明遇到這樣一個問題:如圖1,對面積為a的△ABC逐次進(jìn)行以下操作:分別延長AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.小明是這樣思考和解決這個問題的:如圖2,連接A1C、B1A、C1B,因?yàn)锳1B2AB,B1C2BC,C1A2CA,根據(jù)等高兩三角形的面積比等于底之比,所以2S△ABC2a,由此繼續(xù)推理,從而解決了這個問題.(1)直接寫出S1(用含字母a的式子表示).請參考小明同學(xué)思考問題的方法,解決下列問題:(2)如圖3,P為△ABC內(nèi)一點(diǎn),連接AP、BP、CP并延長分別交邊BC、AC、AB于點(diǎn)D、E、F,則把△ABC分成六個小三角形,其中四個小三角形面積已在圖上標(biāo)明,求△ABC的面積.(3)如圖4,若點(diǎn)P為△ABC的邊AB上的中線CF的中點(diǎn),求S△APE與S△BPF的比值.23.?dāng)?shù)軸上有兩個動點(diǎn)M,N,如果點(diǎn)M始終在點(diǎn)N的左側(cè),我們稱作點(diǎn)M是點(diǎn)N的“追趕點(diǎn)”.如圖,數(shù)軸上有2個點(diǎn)A,B,它們表示的數(shù)分別為-3,1,已知點(diǎn)M是點(diǎn)N的“追趕點(diǎn)”,且M,N表示的數(shù)分別為m,n.(1)由題意得:點(diǎn)A是點(diǎn)B的“追趕點(diǎn)”,AB=1-(-3)=4(AB表示線段AB的長,以下相同);類似的,MN=____________.(2)在A,M,N三點(diǎn)中,若其中一個點(diǎn)是另外兩個點(diǎn)所構(gòu)成線段的中點(diǎn),請用含m的代數(shù)式來表示n.(3)若AM=BN,MN=BM,求m和n值.24.閱讀材料:關(guān)于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)榻獾茫驗(yàn)閠為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請直接寫出答案.25.對于實(shí)數(shù)x,若,則符合條件的中最大的正數(shù)為的內(nèi)數(shù),例如:8的內(nèi)數(shù)是5;7的內(nèi)數(shù)是4.(1)1的內(nèi)數(shù)是______,20的內(nèi)數(shù)是______,6的內(nèi)數(shù)是______;(2)若3是x的內(nèi)數(shù),求x的取值范圍;(3)一動點(diǎn)從原點(diǎn)出發(fā),以3個單位/秒的速度按如圖1所示的方向前進(jìn),經(jīng)過秒后,動點(diǎn)經(jīng)過的格點(diǎn)(橫,縱坐標(biāo)均為整數(shù)的點(diǎn))中能圍成的最大實(shí)心正方形的格點(diǎn)數(shù)(包括正方形邊界與內(nèi)部的格點(diǎn))為,例如當(dāng)時,,如圖2①……;當(dāng)時,,如圖2②,③;……①用表示的內(nèi)數(shù);②當(dāng)?shù)膬?nèi)數(shù)為9時,符合條件的最大實(shí)心正方形有多少個,在這些實(shí)心正方形的格點(diǎn)中,直接寫出離原點(diǎn)最遠(yuǎn)的格點(diǎn)的坐標(biāo).(若有多點(diǎn)并列最遠(yuǎn),全部寫出)26.某市出租車的起步價是7元(起步價是指不超過行程的出租車價格),超過3km行程后,其中除的行程按起步價計(jì)費(fèi)外,超過部分按每千米1.6元計(jì)費(fèi)(不足按計(jì)算).如果僅去程乘出租車而回程時不乘坐此車,并且去程超過,那么顧客還需付回程的空駛費(fèi),超過部分按每千米0.8元計(jì)算空駛費(fèi)(即超過部分實(shí)際按每千米2.4元計(jì)費(fèi)).如果往返都乘同一出租車并且中間等候時間不超過3分鐘,則不收取空駛費(fèi)而加收1.6元等候費(fèi).現(xiàn)設(shè)小文等4人從市中心A處到相距()的B處辦事,在B處停留的時間在3分鐘以內(nèi),然后返回A處.現(xiàn)在有兩種往返方案:方案一:去時4人同乘一輛出租車,返回都乘公交車(公交車票為每人2元);方案二:4人乘同一輛出租車往返.問選擇哪種計(jì)費(fèi)方式更省錢?(寫出過程)27.如圖①,在平直角坐標(biāo)系中,△ABO的三個頂點(diǎn)為A(a,b),B(﹣a,3b),O(0,0),且滿足|b﹣2|=0,線段AB與y軸交于點(diǎn)C.(1)求出A,B兩點(diǎn)的坐標(biāo);(2)求出△ABO的面積;(3)如圖②,將線段AB平移至B點(diǎn)的對應(yīng)點(diǎn)落在x軸的正半軸上時,此時A點(diǎn)的對應(yīng)點(diǎn)為,記△的面積為S,若24<S<32,求點(diǎn)的橫坐標(biāo)的取值范圍.28.某地葡萄豐收,準(zhǔn)備將已經(jīng)采摘下來的11400公斤葡萄運(yùn)送杭州,現(xiàn)有甲、乙、丙三種車型共選擇,每輛車運(yùn)載能力和運(yùn)費(fèi)如表表示(假設(shè)每輛車均滿載)車型甲乙丙汽車運(yùn)載量(公斤/輛)600800900汽車運(yùn)費(fèi)(元/輛)500600700(1)若全部葡萄都用甲、乙兩種車型來運(yùn),需運(yùn)費(fèi)8700元,則需甲、乙兩種車型各幾輛?(2)為了節(jié)省運(yùn)費(fèi),現(xiàn)打算用甲、乙、丙三種車型都參與運(yùn)送,已知它們的總輛數(shù)為15輛,你能分別求出這三種車型的輛數(shù)嗎?怎樣安排運(yùn)費(fèi)最?。?9.如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點(diǎn).在平面直角坐標(biāo)系中,以任意兩點(diǎn)P(x1,y1)、Q(x2,y2)為端點(diǎn)的線段中點(diǎn)坐標(biāo)為(,).(1)則A點(diǎn)的坐標(biāo)為;點(diǎn)C的坐標(biāo)為,D點(diǎn)的坐標(biāo)為.(2)已知坐標(biāo)軸上有兩動點(diǎn)P、Q同時出發(fā),P點(diǎn)從C點(diǎn)出發(fā)沿x軸負(fù)方向以1個單位長度每秒的速度勻速移動,Q點(diǎn)從O點(diǎn)出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點(diǎn)Q到達(dá)A點(diǎn)整個運(yùn)動隨之結(jié)束.設(shè)運(yùn)動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點(diǎn)F是線段AC上一點(diǎn),滿足∠FOC=∠FCO,點(diǎn)G是第二象限中一點(diǎn),連OG,使得∠AOG=∠AOF.點(diǎn)E是線段OA上一動點(diǎn),連CE交OF于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關(guān)系,并說明理由.30.閱讀以下內(nèi)容:已知有理數(shù)m,n滿足m+n=3,且求k的值.三位同學(xué)分別提出了以下三種不同的解題思路:甲同學(xué):先解關(guān)于m,n的方程組,再求k的值;乙同學(xué):將原方程組中的兩個方程相加,再求k的值;丙同學(xué):先解方程組,再求k的值.(1)試選擇其中一名同學(xué)的思路,解答此題;(2)在解關(guān)于x,y的方程組時,可以用①×7﹣②×3消去未知數(shù)x,也可以用①×2+②×5消去未知數(shù)y.求a和b的值.【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1)(-2,0);(2)①t=2;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③能確定,z=x+y.【分析】(1)根據(jù)平移的性質(zhì)即可得到結(jié)論;(2)①由點(diǎn)C的坐標(biāo)為(-3,2).得到BC=3,CD=2,由于點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);于是確定點(diǎn)P在線段BC上,有PB=CD,即可得到結(jié)果;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③如圖,過P作PF∥BC交AB于F,則PF∥AD,根據(jù)平行線的性質(zhì)即可得到結(jié)論.【詳解】解:(1)根據(jù)題意,可得三角形OAB沿x軸負(fù)方向平移3個單位得到三角形DEC,∵點(diǎn)A的坐標(biāo)是(1,0),∴點(diǎn)E的坐標(biāo)是(-2,0);故答案為:(-2,0);(2)①∵點(diǎn)C的坐標(biāo)為(-3,2)∴BC=3,CD=2,∵點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);∴點(diǎn)P在線段BC上,∴PB=CD,即t=2;∴當(dāng)t=2秒時,點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);故答案為:2;②當(dāng)點(diǎn)P在線段BC上時,點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時,點(diǎn)P的坐標(biāo)(-3,5-t);③能確定,如圖,過P作PF∥BC交AB于F,則PF∥AD,∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),坐標(biāo)與圖形的變化-平移,平行線的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.2.(1)見解析;(2)10°;(3)【分析】(1)過點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯角相等,得出結(jié)合已知條件,得出即可證明;(2)過點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因?yàn)椋氲氖阶蛹纯汕蟪觯驹斀狻浚?)過點(diǎn)E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點(diǎn)E作HE∥CD,如圖,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,解決問題的關(guān)鍵是作平行線構(gòu)造相等的角,利用兩直線平行,內(nèi)錯角相等,同位角相等來計(jì)算和推導(dǎo)角之間的關(guān)系.3.(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過點(diǎn)N作NH∥CD,利用角平分線的定義以及平行線的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點(diǎn)N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當(dāng)點(diǎn)M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點(diǎn)睛】本題主要考查了平行線的判定與性質(zhì),熟練掌握兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,同位角相等等知識是解題的關(guān)鍵.4.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點(diǎn)P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點(diǎn)睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對點(diǎn)P進(jìn)行分類討論:當(dāng)點(diǎn)在延長線時;當(dāng)在之間時;與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當(dāng)點(diǎn)在延長線時,如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時,如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行內(nèi)錯角相等,從而得到角的關(guān)系.6.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點(diǎn)作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點(diǎn)P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點(diǎn)作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點(diǎn)睛】本題主要考查平行線的性質(zhì)與判定,靈活運(yùn)用平行線的性質(zhì)與判定是解題的關(guān)鍵.7.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根據(jù)定義可得:f(10b)=b,即可求得結(jié)論;②根據(jù)運(yùn)算性質(zhì):f(mn)=f(m)+f(n),f()=f(n)-f(m)進(jìn)行計(jì)算;③通過9=32,27=33,可以判斷f(3)是否正確,同樣依據(jù)5=,假設(shè)f(5)正確,可以求得f(2)的值,即可通過f(8),f(12)作出判斷.【詳解】解:①根據(jù)定義知:f(10b)=b,∴f(10)=1,f(103)=3.故答案為:1,3.②根據(jù)運(yùn)算性質(zhì),得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990.故答案為:0.6020;0.6990.③若f(3)≠2a-b,則f(9)=2f(3)≠4a-2b,f(27)=3f(3)≠6a-3b,從而表中有三個對應(yīng)的f(x)是錯誤的,與題設(shè)矛盾,∴f(3)=2a-b;若f(5)≠a+c,則f(2)=1-f(5)≠1-a-c,∴f(8)=3f(2)≠3-3a-3c,f(6)=f(3)+f(2)≠1+a-b-c,表中也有三個對應(yīng)的f(x)是錯誤的,與題設(shè)矛盾,∴f(5)=a+c,∴表中只有f(1.5)和f(12)的對應(yīng)值是錯誤的,應(yīng)改正為:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c.∵9=32,27=33,∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b.【點(diǎn)睛】本題考查了冪的應(yīng)用,新定義運(yùn)算等,解題的關(guān)鍵是深刻理解所給出的定義或規(guī)則,將它們轉(zhuǎn)化為我們所熟悉的運(yùn)算.8.(1)不是,是;(2)見解析;(3)432或456或840或864或888【分析】(1)根據(jù)等差數(shù)的定義判定即可;(2)設(shè)這個三位數(shù)是M,,根據(jù)等差數(shù)的定義可知,進(jìn)而得出即可.(3)根據(jù)等差數(shù)的定義以及24的倍數(shù)的數(shù)的特征可先求出a的值,再根據(jù)是8的倍數(shù)可確定c的值,又因?yàn)椋钥纱_定a、c為偶數(shù)時b才可取整數(shù)有意義,排除不符合條件的a、c值,再將符合條件的a、c代入求出b的值,即可求解.【詳解】解:(1)∵,∴148不是等差數(shù),∵,∴514335是等差數(shù);(2)設(shè)這個三位數(shù)是M,,∵,∴,∵,∴這個等差數(shù)是3的倍數(shù);(3)由(2)知,∵T是24的倍數(shù),∴是8的倍數(shù),∵2c是偶數(shù),∴只有當(dāng)35a也是偶數(shù)時才有可能是8的倍數(shù),∴或4或6或8,當(dāng)時,,此時若,則,若,則,若,則,大于70又是8的倍數(shù)的最小數(shù)是72,之后是80,88當(dāng)時不符合題意;當(dāng)時,,此時若,則,若,則,(144、152是8的倍數(shù)),當(dāng)時,,此時若,則,若,則,(216、244是8的倍數(shù)),當(dāng)時,,此時若,則,若,則,若,則,(280,288,296是8的倍數(shù)),∵,∴若a是偶數(shù),則c也是偶數(shù)時b才有意義,∴和是c是奇數(shù)均不符合題意,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,綜上,T為432或456或840或864或888.【點(diǎn)睛】本題考查新定義下的實(shí)數(shù)運(yùn)算、有理數(shù)混合運(yùn)算,整式的加減運(yùn)算,能夠結(jié)合倍數(shù)的特點(diǎn)及熟練掌握整數(shù)的奇偶性是解題關(guān)鍵.9.(1)1022;(2)3066,2226;(3)【分析】(1)由于千位不能為0,最小只能取1;根據(jù)題目得出相應(yīng)的公式:十位=2×千位﹣百位,個位=2×千位+百位,分別求出十位和個位,即可求出最小的四位依賴數(shù);(2)設(shè)千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),依據(jù)題意列出代數(shù)式然后表示為7的倍數(shù)加余數(shù)形式,然后求出x、y即可,從而求出所有特色數(shù);(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,故將(2)中特色數(shù)分解,找到最小分解,然后將n、p、q的值代入F(m)=,再比較大小即可.【詳解】解:(1)由題意可知:千位一定是1,百位取0,十位上的數(shù)字為:2×1-0=2,個位上的數(shù)字為:2×1+0=2則最小的四位依賴數(shù)是1022;(2)設(shè)千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),根據(jù)題意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非負(fù)整數(shù))∴此方程的一位整數(shù)解為:x=4,y=5(此時2x+y>10,故舍去);x=3,y=7(此時2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此時2x﹣y<0,故舍去);∴特色數(shù)是3066,2226.(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,由(2)可知:特色數(shù)有3066和2226兩個,對于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解時:n=2,p=50,q=61∴F(3066)=對于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解時:n=2,p=34,q=65∴F(2226)=∵故所有“特色數(shù)”的F(m)的最大值為:.【點(diǎn)睛】此題考查的是新定義類問題,理解題意,并根據(jù)新定義解決問題是解決此題的關(guān)鍵.10.(1),;(2)①圖見解析,;②見解析【分析】(1)根據(jù)圖1得到小正方形的對角線長,即可得出數(shù)軸上點(diǎn)A和點(diǎn)B表示的數(shù)(2)根據(jù)長方形的面積得正方形的面積,即可得到正方形的邊長,再畫出圖象即可;(3)從原點(diǎn)開始畫一個長是2,高是1的長方形,對角線長即是a,再用圓規(guī)以這個長度畫弧,交數(shù)軸于點(diǎn)M,再把這個長方形向左平移3個單位,用同樣的方法得到點(diǎn)N.【詳解】(1)由圖1知,小正方形的對角線長是,∴圖2中點(diǎn)A表示的數(shù)是,點(diǎn)B表示的數(shù)是,故答案是:,;(2)①長方形的面積是5,拼成的正方形的面積也應(yīng)該是5,∴正方形的邊長是,如圖所示:故答案是:;②如圖所示:【點(diǎn)睛】本題考查無理數(shù)的表示方法,解題的關(guān)鍵是理解題意,模仿題目中給出的解題方法進(jìn)行求解.11.(1)不是,是;(2)見解析;(3)432或456或840或864或888【分析】(1)根據(jù)等差數(shù)的定義判定即可;(2)設(shè)這個三位數(shù)是M,,根據(jù)等差數(shù)的定義可知,進(jìn)而得出即可.(3)根據(jù)等差數(shù)的定義以及24的倍數(shù)的數(shù)的特征可先求出a的值,再根據(jù)是8的倍數(shù)可確定c的值,又因?yàn)椋钥纱_定a、c為偶數(shù)時b才可取整數(shù)有意義,排除不符合條件的a、c值,再將符合條件的a、c代入求出b的值,即可求解.【詳解】解:(1)∵,∴148不是等差數(shù),∵,∴514335是等差數(shù);(2)設(shè)這個三位數(shù)是M,,∵,∴,∵,∴這個等差數(shù)是3的倍數(shù);(3)由(2)知,∵T是24的倍數(shù),∴是8的倍數(shù),∵2c是偶數(shù),∴只有當(dāng)35a也是偶數(shù)時才有可能是8的倍數(shù),∴或4或6或8,當(dāng)時,,此時若,則,若,則,若,則,大于70又是8的倍數(shù)的最小數(shù)是72,之后是80,88當(dāng)時不符合題意;當(dāng)時,,此時若,則,若,則,(144、152是8的倍數(shù)),當(dāng)時,,此時若,則,若,則,(216、244是8的倍數(shù)),當(dāng)時,,此時若,則,若,則,若,則,(280,288,296是8的倍數(shù)),∵,∴若a是偶數(shù),則c也是偶數(shù)時b才有意義,∴和是c是奇數(shù)均不符合題意,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,綜上,T為432或456或840或864或888.【點(diǎn)睛】本題考查新定義下的實(shí)數(shù)運(yùn)算、有理數(shù)混合運(yùn)算,整式的加減運(yùn)算,能夠結(jié)合倍數(shù)的特點(diǎn)及熟練掌握整數(shù)的奇偶性是解題關(guān)鍵.12.(1)15;(2);(3).【分析】(1)先計(jì)算乘方,即可求出答案;(2)根據(jù)題目中的運(yùn)算法則進(jìn)行計(jì)算,即可求出答案;(3)根據(jù)題目中的運(yùn)算法則進(jìn)行計(jì)算,即可求出答案;【詳解】解:(1);故答案為:15;(2)設(shè)①,把等式①兩邊同時乘以5,得②,由②①,得:,∴,∴;(3)設(shè)①,把等式①乘以10,得:②,把①+②,得:,∴,∴,∴.【點(diǎn)睛】本題考查了數(shù)字的變化規(guī)律,熟練掌握運(yùn)算法則,熟練運(yùn)用有理數(shù)乘法,以及運(yùn)用消項(xiàng)的思想是解題的關(guān)鍵.13.(1),;(2),理由見解析;(3)【分析】(1)根據(jù)已知條件求出AD和BC的長度,即可得到D、C的坐標(biāo);(2)連接BD與直線CG相交,其交點(diǎn)Q即為所求,然后根據(jù)求出QC、QG后即可得到Q點(diǎn)坐標(biāo);(3)過H作HF∥AB,過C作CM∥ED,則根據(jù)已知條件、平行線的性質(zhì)和角的有關(guān)知識可以得到.【詳解】(1)解:由題意可得四邊形ABCD是平行四邊形,且AD與BC間距離為1-(-1)=2,∴平行四邊形ABCD的高為2,∴AD=BC=S四邊形ABCD÷2=12÷2=6,∴C點(diǎn)坐標(biāo)為(-4+6,-1)即(2,-1),D點(diǎn)坐標(biāo)為(-2+6,1)即(4,1);(2)解:如圖,連接交于,∵,∴此時最?。▋牲c(diǎn)之間,線段最短),過作于,∵,,,∴,,,設(shè),∴,,,又∵,∴,∴,∴,∴.(3)∵,,∴,,∴.∵平分,∴.又∵,設(shè),則,∴,,過作,又∵,∴,∴,∴.過作,∴,.∵于,∴,∴,∴,又∵,∴.【點(diǎn)睛】本題考查平行線的綜合應(yīng)用,熟練掌握平行線的判定與性質(zhì)、平移坐標(biāo)變換規(guī)律、兩點(diǎn)之間線段最短的性質(zhì)、角的有關(guān)知識和運(yùn)算是解題關(guān)鍵.14.(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進(jìn)而得出結(jié)論;(3)過點(diǎn)C

作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過點(diǎn)B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過點(diǎn)C

作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點(diǎn)睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識;本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.15.(1)①6;②的坐標(biāo)為,;(2).【解析】【分析】(1)①易證四邊形AECO為矩形,則點(diǎn)B到AE的距離為OA,AE=OC=3,OA=CE=4,S△ABE=AE?OA,即可得出結(jié)果;②設(shè)點(diǎn)的坐標(biāo)為,分兩種情況:點(diǎn)在點(diǎn)上方,連接,得=++=8,點(diǎn)在點(diǎn)的下方,得=8,分別列出方程解方程即可得出結(jié)果;(2)由S△AOF=S△QBF,則S△AOB=S△QOB,△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,得出OA=CQ,即可得出結(jié)果.【詳解】解:(1)①∵CD⊥x軸,AE⊥CD,∴AE∥x軸,四邊形AECO為矩形,點(diǎn)B到AE的距離為OA,∵點(diǎn)A(0,4),點(diǎn)C(3,0),∴AE=OC=3,OA=CE=4,∴S△ABE=AE?OA=×3×4=6,故答案為:6;②設(shè)點(diǎn)的坐標(biāo)為.(i)∵點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,∴.∵,∴.∴點(diǎn)在點(diǎn)上方,連接(如圖1).根據(jù)題意得∵,∴,∴,∴.∴當(dāng)點(diǎn)的坐標(biāo)為.(ii)點(diǎn)在點(diǎn)的下方,連接(如圖2).∵.∴.∴點(diǎn)在點(diǎn)的下方,根據(jù)題意得∵,∴,∴,∴.∴當(dāng)點(diǎn)的坐標(biāo)為.(2)(2)∵S△AOF=S△QBF,如圖3所示:∴S△AOB=S△QOB,∵△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,∴OA=CQ,∴點(diǎn)Q的坐標(biāo)為(3,4),故答案為:(3,4).【點(diǎn)睛】本題是三角形綜合題,主要考查了圖形與點(diǎn)的坐標(biāo)、矩形的判定與性質(zhì)、三角形面積的計(jì)算等知識,熟練掌握圖形與點(diǎn)的坐標(biāo),靈活運(yùn)用割補(bǔ)法表示三角形面積列出方程是解題的關(guān)鍵.16.(1);(2)①;②或.【分析】(1)提示1:先列出4個x的值,分別得出與的大小關(guān)系,再利用“不完全歸納法”即可得;提示2:先根據(jù)“”得出,再根據(jù)“”即可得;(2)①根據(jù)(1)的結(jié)論得出,據(jù)此解不等式組即可得;②先根據(jù)(1)的結(jié)論得出,再解不等式組求出n的取值范圍,從而可得的取值范圍,然后根據(jù)“為整數(shù)”可得出方程,由此解方程即可得.【詳解】(1)提示1:當(dāng)時,,則當(dāng)時,,則當(dāng)時,,則當(dāng)時,,則由“不完全歸納法”可得:;提示2:,且;(2)①由(1)的結(jié)論得:解得;②由(1)的結(jié)論得:解得為整數(shù)則或解得或.【點(diǎn)睛】本題考查了一元一次不等式組的應(yīng)用、解一元一次方程等知識點(diǎn),理解新定義,正確求解不等式組是解題關(guān)鍵.17.(1)4;(2)①或;②;(3)或.【分析】(1)先根據(jù)偶次方和絕對值的非負(fù)性求出的值,從而可得點(diǎn)的坐標(biāo)和的長,再利用直角三角形的面積公式即可得;(2)①分和兩種情況,先分別求出和的面積,再根據(jù)已知條件建立不等式,解不等式即可得;②分和兩種情況,利用、和的面積關(guān)系建立等式,化簡即可得;(3)過點(diǎn)作軸的平行線,交直線于點(diǎn),從而可得,再分、和三種情況,分別利用三角形的面積公式建立方程,解方程即可得.【詳解】解:(1)由題意得:,解得,,,軸軸,;(2)①的面積不大于面積的,的面積小于的面積,則分以下兩種情況:如圖,當(dāng)時,則,,因此有,解得,此時的取值范圍為;如圖,當(dāng)時,則,,因此有,解得,此時的取值范圍為,綜上,點(diǎn)橫坐標(biāo)的取值范圍為或;②當(dāng)時,則,,由(2)①可知,,則,即;如圖,當(dāng)時,則,,,,,解得,綜上,;(3)過點(diǎn)作軸的平行線,交直線于點(diǎn),由(2)②可知,,則,由題意,分以下三種情況:①如圖,當(dāng)時,則,,解得,不符題設(shè),舍去;②如圖,當(dāng)時,則,,解得或(不符題設(shè),舍去);③如圖,當(dāng)時,則,,解得,符合題設(shè),綜上,的值為或.【點(diǎn)睛】本題考查了偶次方和絕對值的非負(fù)性、坐標(biāo)與圖形等知識點(diǎn),較難的是題(3),正確分三種情況討論是解題關(guān)鍵.18.(1)(0,6),(8,0);(2)存在t=2.4時,使得△ODP與△ODQ的面積相等;(3)∠DOG+∠ACE=∠OHC【分析】(1)利用非負(fù)性即可求出a,b即可得出結(jié)論;(2)先表示出OQ,OP,利用面積相等,建立方程求解即可得出結(jié)論;(3)先判斷出∠OAC=∠AOD,進(jìn)而判斷出OG∥AC,即可判斷出∠FHC=∠ACE,同理∠FHO=∠DOG,即可得出結(jié)論.【詳解】解:(1)∵,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0),故答案為(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由運(yùn)動知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴S△ODQ=OQ×|xD|=t×4=2t,S△ODP=OP×|yD|=(8-2t)×3=12-3t,∵△ODP與△ODQ的面積相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4時,使得△ODP與△ODQ的面積相等;(3)∴∠GOD+∠ACE=∠OHC,理由如下:∵x軸⊥y軸,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°,又∵∠DOC=∠DCO,∴∠OAC=∠AOD,∵y軸平分∠GOD,∴∠GOA=∠AOD,∴∠GOA=∠OAC,∴OG∥AC,如圖,過點(diǎn)H作HF∥OG交x軸于F,∴HF∥AC,∴∠FHC=∠ACE,同理∠FHO=∠GOD,∵OG∥FH,∴∠DOG=∠FHO,∴∠DOG+∠ACE=∠FHO+∠FHC,即∠DOG+∠ACE=∠OHC.【點(diǎn)睛】此題是三角形綜合題,主要考查了非負(fù)性的性質(zhì),三角形的面積公式,角平分線的定義,平行線的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.19.(1)①20070618;②見解析;(2)16080413【分析】(1)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(2)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(3)由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,A2=4+2=6,A3=8+1=9,由此得到李思在8年級4班,再求出A4,A5,即可得到答案.【詳解】解:(1)①在圖1中,A1=16×1+8×0+4×1+2×0+0=20,A2=16×0+8×0+4×1+2×1+1=7,A3=16×0+8×0+4×1+2×1+0=6,A4=1,A5=16×0+8×1+4×0+2×0+0=8,故答案為:20070618;②如圖所示.2018年入學(xué)的9年級5班的39號,其中:A1=18=16+0+0+1+1,A2=09=8+1A3=05=4+1,A4=3,A5=9=8+1.(2)設(shè)李思同學(xué)在x年級y班.由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,因此,李思是2016年入學(xué)的.A2=4+2=6,A3=8+1=9.由加密規(guī)則,得:,解得x=8,y=4,所以,李思在8年級4班.A4=2+1=3,A5=2+1=3,33-2=31,根據(jù)加密規(guī)則,原編號的末兩位數(shù)為13.綜上,李思同學(xué)的編號是16080413.【點(diǎn)睛】本題主要考查了實(shí)數(shù)與圖形,解二元一次方程組,截圖的關(guān)鍵在于能夠準(zhǔn)確讀懂題意.20.1【分析】利用AM:AN=8:9,設(shè)通道的寬為xm,AM=8ym,則AN=9ym,進(jìn)而利用AD為18m,AB為13m,得出等式求出即可.【詳解】設(shè)通道的寬是xm,AM=8ym.因?yàn)锳M∶AN=8∶9,所以AN=9ym.所以解得答:通道的寬是1m.故答案為1.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用.21.(1);(2)有4種方案:3臺甲種機(jī)器,7臺乙種機(jī)器;2臺甲種機(jī)器,8臺乙種機(jī)器;1臺甲種機(jī)器,9臺乙種機(jī)器;10臺乙種機(jī)器.(3)最省錢的方案是購買2臺甲種機(jī)器,8臺乙種機(jī)器.【分析】(1)根據(jù)購買一臺甲型機(jī)器比購買一臺乙型機(jī)器多12萬元,購買2臺甲型機(jī)器比購買3臺乙型機(jī)器多6萬元這一條件建立一元二次方程組求解即可,(2)設(shè)買了x臺甲種機(jī)器,根據(jù)該公司購買新機(jī)器的資金不超過216萬元,建立一次不等式求解即可,(3)將兩種機(jī)器生產(chǎn)的產(chǎn)量相加,使總產(chǎn)量不低于1890噸,求出x的取值范圍,再分別求出對應(yīng)的成本即可解題.【詳解】(1)解:由題意得,解得,;(2)解:設(shè)買了x臺甲種機(jī)器由題意得:30+18(10-x)≤216解得:x≤3∵x為非負(fù)整數(shù)∴x=0、1、2、3∴有4種方案:3臺甲種機(jī)器,7臺乙種機(jī)器;2臺甲種機(jī)器,8臺乙種機(jī)器;1臺甲種機(jī)器,9臺乙種機(jī)器;10臺乙種機(jī)器.(3)解:由題意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤3∴整數(shù)x=2或3當(dāng)x=2時購買費(fèi)用=30×2+18×8=204(元)當(dāng)x=3時購買費(fèi)用=30×3+18×7=216(元)∴最省錢的方案是購買2臺甲種機(jī)器,8臺乙種機(jī)器.【點(diǎn)睛】本題考查了利潤的實(shí)際應(yīng)用,二元一次方程租的實(shí)際應(yīng)用,一元一次不等式的實(shí)際應(yīng)用,難度較大,認(rèn)真審題,找到等量關(guān)系和不等關(guān)系并建立方程組和不等式組是解題關(guān)鍵.22.(1)19a;(2)315;(3).【解析】【分析】(1)首先根據(jù)題意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,則可求得面積S1的值;(2)根據(jù)等高不等底的三角形的面積的比等于底邊的比,求解,從而不難求得△ABC的面積;(3)設(shè)S△BPF=m,S△APE=n,依題意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出,從而求解.【詳解】解:(1)連接A1C,∵B1C=2BC,A1B=2AB,∴,,,∴,∴,同理可得出:,∴S1=6a+6a+6a+a=19a;故答案為:19a;(2)過點(diǎn)作于點(diǎn),設(shè),,;,.,即.同理,...①,,.②由①②,得,.(3)設(shè),,如圖所示.依題意,得,..,.,,...【點(diǎn)睛】此題考查了三角形面積之間的關(guān)系.(2)的關(guān)鍵是設(shè)出未知三角形的面積,然后根據(jù)等高不等底的三角形的面積的比等于底邊的比列式求解.23.(1)n-m;(2)①M(fèi)是AN的中點(diǎn),n=2m+3;②A是MN中點(diǎn),n=-m-6;③N是AM的中點(diǎn),;(3)或或.【分析】(1)由兩點(diǎn)間距離直接求解即可;(2)分三種情況討論:①M(fèi)是A、N的中點(diǎn),n=2m+3;②當(dāng)A點(diǎn)在M、N點(diǎn)中點(diǎn)時,n=﹣6﹣m;③N是M、A的中點(diǎn)時,n;(3)由已知可得|m+3|=|n﹣1|,n﹣m|m+3|,分情況求解即可.【詳解】(1)MN=n﹣m.故答案為:n﹣m;(2)分三種情況討論:①M(fèi)是A、N的中點(diǎn),∴n+(-3)=2m,∴n=2m+3;②A是M、N點(diǎn)中點(diǎn)時,m+n=-3×2,∴n=﹣6﹣m;③N是M、A的中點(diǎn)時,-3+m=2n,∴n;(3)∵AM=BN,∴|m+3|=|n﹣1|.∵M(jìn)NBM,∴n﹣m|m+3|,∴或或或,∴或或或.∵n>m,∴或或.【點(diǎn)睛】本題考查了列代數(shù)式,解二元一次方程組以及數(shù)軸上兩點(diǎn)間的距離公式,解答本題的關(guān)鍵是:(1)根據(jù)兩點(diǎn)間的距離公式求出線段AB的長;(2)分三種情況討論;(3)分四種情況討論.解決該題型題目時,結(jié)合數(shù)量關(guān)系表示出線段的長度,再根據(jù)線段間的關(guān)系列出方程是關(guān)鍵.24.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結(jié)論.【詳解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則θ=-1,故答案為-1;(2)方程2x+3y=24一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)?,解?3<t<2.因?yàn)閠為整數(shù),所以t=-2,-1,0,1.(3)方程19x+8y=1908一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).∵,解得<t<12.5.因?yàn)閠為整數(shù),所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整數(shù)解有13組.【點(diǎn)睛】本題考查了二元一次方程的解,一元一次不等式的整數(shù)解,理解題意、掌握解題方法是本題的關(guān)鍵.25.(1)2,7,4;(2);(3)①t的內(nèi)數(shù);②符合條件的最大實(shí)心正方形有2個,離原點(diǎn)最遠(yuǎn)的格點(diǎn)的坐標(biāo)有兩個,為.【分析】(1)根據(jù)內(nèi)數(shù)的定義即可求解;(2)根據(jù)內(nèi)數(shù)的定義可列不等式,求解即可;(3)①分析可得當(dāng)時,即t的內(nèi)數(shù)為2時,;當(dāng)時,即t的內(nèi)數(shù)為3時,,當(dāng)時,即t的內(nèi)數(shù)為4時,……歸納可得結(jié)論;②分析可得當(dāng)t的內(nèi)數(shù)為奇數(shù)時,最大實(shí)心正方形有2個;當(dāng)t的內(nèi)數(shù)為偶數(shù)時,最大實(shí)心正方形有1個;且最大實(shí)心正方形的邊長為:的內(nèi)數(shù)-1,即可求解.【詳解】解:(1),所以1的內(nèi)數(shù)是2;,所以20的內(nèi)數(shù)是7;,所以6的內(nèi)數(shù)是4;(2)∵3是x的內(nèi)數(shù),∴,解得;(3)①當(dāng)時,即t的內(nèi)數(shù)為2時,;當(dāng)時,即t的內(nèi)數(shù)為3時,,當(dāng)時,即t的內(nèi)數(shù)為4時,,……∴t的內(nèi)數(shù);②當(dāng)t的內(nèi)數(shù)為2時,最大實(shí)心正方形有1個;當(dāng)t的內(nèi)數(shù)為3時,最大實(shí)心正方形有2個,當(dāng)t的內(nèi)數(shù)為4時,最大實(shí)心正方形有1個,……即當(dāng)t的內(nèi)數(shù)為奇數(shù)時,最大實(shí)心正方形有2個;當(dāng)t的內(nèi)數(shù)為偶數(shù)時,最大實(shí)心正方形有1個;∴當(dāng)?shù)膬?nèi)數(shù)為9時,符合條件的最大實(shí)心正方形有2個,由前幾個例子推理可得最大實(shí)心正方形的邊長為:的內(nèi)數(shù)-1,∴此時最大實(shí)心正方形的邊長為8,離原點(diǎn)最遠(yuǎn)的格點(diǎn)的坐標(biāo)有兩個,為.【點(diǎn)睛】本題考查圖形類規(guī)律探究,明確題干中內(nèi)數(shù)的定義是解題的關(guān)鍵.26.當(dāng)x小于5時,方案二省錢;當(dāng)x=5時,兩種方案費(fèi)用相同;當(dāng)x大于5且不大于12時時,方案一省錢【分析】先根據(jù)題意列出方案一的費(fèi)用:起步價+超過3km的km數(shù)×1.6元+回程的空駛費(fèi)+乘公交的費(fèi)用,再求出方案二的費(fèi)用:起步價+超過3km的km數(shù)×1.6元+返回時的費(fèi)用1.6x+1.6元的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論