2024年廣東省臺山市中考數(shù)學練習題及參考答案詳解(黃金題型)_第1頁
2024年廣東省臺山市中考數(shù)學練習題及參考答案詳解(黃金題型)_第2頁
2024年廣東省臺山市中考數(shù)學練習題及參考答案詳解(黃金題型)_第3頁
2024年廣東省臺山市中考數(shù)學練習題及參考答案詳解(黃金題型)_第4頁
2024年廣東省臺山市中考數(shù)學練習題及參考答案詳解(黃金題型)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省臺山市中考數(shù)學練習題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、把拋物線的圖象向左平移1個單位,再向上平移2個單位,所得的拋物線的函數(shù)關系式是(

)A. B. C. D.2、將拋物線C1:y=(x-3)2+2向左平移3個單位長度,得到拋物線C2,拋物線C2與拋物線C3關于x軸對稱,則拋物線C3的解析式為().A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-23、已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①4a+2b+c>0

;②y隨x的增大而增大;③方程ax2+bx+c=0兩根之和小于零;④一次函數(shù)y=ax+bc的圖象一定不過第二象限,其中正確的個數(shù)是(

)A.4個 B.3個 C.2個 D.1個4、二次函數(shù)y=x2+px+q,當0≤x≤1時,此函數(shù)最大值與最小值的差(

)A.與p、q的值都有關 B.與p無關,但與q有關C.與p、q的值都無關 D.與p有關,但與q無關5、生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件,全組共互贈了182件,如果全組有x名同學,則根據(jù)題意列出的方程是(

)A. B.C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,O是正△ABC內一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論中正確的結論是()A.△BO′A可以由△BOC繞點B逆時針旋轉60°得到B.點O與O′的距離為4C.∠AOB=150°D.S四邊形AOBO′=6+3E.S△AOC+S△AOB=6+2、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+173、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,則下列結論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°4、下列方程中,是一元二次方程的是(

)A. B. C. D.5、二次函數(shù)y=ax2+bx+c的部分對應值如下表:以下結論正確的是(

)x…﹣3﹣20135…y…70﹣8﹣9﹣57…A.拋物線的頂點坐標為(1,﹣9);B.與y軸的交點坐標為(0,﹣8);C.與x軸的交點坐標為(﹣2,0)和(2,0);D.當x=﹣1時,對應的函數(shù)值y為﹣5.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、在平面直角坐標系中,二次函數(shù)過點(4,3),若當0≤x≤a時,y有最大值7,最小值3,則a的取值范圍是_____.2、如圖,△ABC內接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____3、《九章算術》是我國古代的數(shù)學名著,其中“勾股”章有一題,大意是說:已知矩形門的高比寬多尺,門的對角線長尺,那么門的高和寬各是多少?如果設門的寬為尺,根據(jù)題意,那么可列方程___________.4、如圖,是等邊三角形,點D為BC邊上一點,,以點D為頂點作正方形DEFG,且,連接AE,AG.若將正方形DEFG繞點D旋轉一周,當AE取最小值時,AG的長為________.5、某班共有36名同學,其中男生16人,喜歡數(shù)學的同學有12人,喜歡體育的同學有24人.從該班同學的學號中隨意抽取1名同學,設這名同學是女生的可能性為a,這名同學喜歡數(shù)學的可能性為b,這名同學喜歡體育的可能性為c,則a,b,c的大小關系是___________.四、解答題(6小題,每小題10分,共計60分)1、已知拋物線y=mx2-2mx-3.(1)若拋物線的頂點的縱坐標是-2,求此時m的值;(2)已知當m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標系中的兩個定點,求出這兩個定點的坐標.2、已知關于x的一元二次方程.(1)求證:不論m取何值,方程總有兩個不相等的實數(shù)根;(2)若方程有兩個實數(shù)根為,,且,求m的值.3、冰墩墩是2022年北京冬季奧運會的吉祥物.冰墩墩以熊貓為原型設計,寓意創(chuàng)造非凡、探索未來.某超市用2400元購進一批冰墩墩玩偶出售.若進價降低20%,則可以多買50個.市場調查發(fā)現(xiàn):當每個冰墩墩玩偶的售價是20元時,每周可以銷售200個;每漲價1元,每周少銷售10個.(1)求每個冰墩墩玩偶的進價;(2)設每個冰墩墩玩偶的售價是x元(x是大于20的正整數(shù)),每周總利潤是w元.①求w關于x的函數(shù)解析式,并求每周總利潤的最大值;②當每周總利潤不低于1870元時,求每個冰墩墩玩偶售價x的范圍.4、每年九月開學前后是文具盒的銷售旺季,商場專門設置了文具盒專柜李經(jīng)理記錄了天的銷售數(shù)量和銷售單價,其中銷售單價(元/個)與時間第天(為整數(shù))的數(shù)量關系如圖所示,日銷量(個)與時間第天(為整數(shù))的函數(shù)關系式為:直接寫出與的函數(shù)關系式,并注明自變量的取值范圍;設日銷售額為(元),求(元)關于(天)的函數(shù)解析式;在這天中,哪一天銷售額(元)達到最大,最大銷售額是多少元;由于需要進貨成本和人員工資等各種開支,如果每天的營業(yè)額低于元,文具盒專柜將虧損,直接寫出哪幾天文具盒專柜處于虧損狀態(tài)5、解下列方程:(1);(2)6、如圖是兩條互相垂直的街道,且A到B,C的距離都是4千米.現(xiàn)甲從B地走向A地,乙從A地走向C地,若兩人同時出發(fā)且速度都是4千米/時,問何時兩人之間的距離最近?-參考答案-一、單選題1、A【解析】【分析】求出原拋物線的頂點坐標,再根據(jù)向左平移橫坐標減,向上平移縱坐標加求出平移后的拋物線的頂點坐標,然后利用頂點式解析式寫出即可.【詳解】解:∵拋物線的頂點坐標為(2,1),∴向左平移1個單位,再向上平移2個單位后的頂點坐標是(1,3)∴所得拋物線解析式是.故選:A.【考點】本題考查了二次函數(shù)圖象的平移,利用頂點的變化確定拋物線解析式的變化更簡便.2、D【解析】【分析】根據(jù)拋物線C1的解析式得到頂點坐標,利用二次函數(shù)平移的規(guī)律:左加右減,上加下減,并根據(jù)平移前后二次項的系數(shù)不變可得拋物線C2的頂點坐標,再根據(jù)關于x軸對稱的兩條拋物線的頂點橫坐標相等,縱坐標互為相反數(shù),二次項系數(shù)互為相反數(shù)可得到拋物線C3所對應的解析式.【詳解】解:∵拋物線C1:y=(x-3)2+2,其頂點坐標為(3,2)∵向左平移3個單位長度,得到拋物線C2∴拋物線C2的頂點坐標為(0,2)∵拋物線C2與拋物線C3關于x軸對稱∴拋物線C3的橫坐標不變,縱坐標互為相反數(shù),二次項系數(shù)互為相反數(shù)∴拋物線C3的頂點坐標為(0,-2),二次項系數(shù)為-1∴拋物線C3的解析式為y=-x2-2故選:D.【考點】本題主要考查了二次函數(shù)圖象的平移、對稱問題,熟練掌握平移的規(guī)律以及關于x軸對稱的兩條拋物線的頂點的橫坐標相等,縱坐標互為相反數(shù),二次項系數(shù)互為相反數(shù)是解題的關鍵.3、D【解析】【分析】根據(jù)函數(shù)的圖象可知x=2時,函數(shù)值的正負性;并且可知與x軸有兩個交點,即對應方程有兩個實數(shù)根;函數(shù)的增減性需要找到其對稱軸才知具體情況;由函數(shù)的圖象還可知b、c的正負性,一次函數(shù)y=ax+bc所經(jīng)過的象限進而可知正確選項.【詳解】∵當x=2時,y=4a+2b+c,對應的y值為正,即4a+2b+c>0,故①正確;∵因為拋物線開口向上,在對稱軸左側,y隨x的增大而減?。辉趯ΨQ軸右側,y隨x的增大而增大,故②錯誤;∵由二次函數(shù)y=ax2+bx+c(a≠0)的圖象可知:函數(shù)圖象與x軸有兩個不同的交點,即對應方程有兩個不相等的實數(shù)根,且正根的絕對值較大,∴方程ax2+bx+c=0兩根之和大于零,故③錯誤;∵由圖象開口向上,知a>0,與y軸交于負半軸,知c<0,由對稱軸,知b<0,∴bc>0,∴一次函數(shù)y=ax+bc的圖象一定經(jīng)過第二象限,故④錯誤;綜上,正確的個數(shù)為1個,故選:D.【考點】本題考查了二次函數(shù)的圖象與系數(shù)的關系以及一次函數(shù)的圖象,利用了數(shù)形結合的思想,此類題涉及的知識面比較廣,能正確觀察圖象是解本題的關鍵.4、D【解析】【分析】分別求出函數(shù)解析式的最小值、當0≤x≤1時端點值即:當x=0和x=1時的函數(shù)值.由二次函數(shù)性質可知此函數(shù)最大值與最小值必是其中的兩個,通過比較可知差值與p有關,但與q無關【詳解】解:依題意得:當時,端點值,當時,端點值,當時,函數(shù)最小值,由二次函數(shù)的最值性質可知,當0≤x≤1時,此函數(shù)最大值和最小值是、、其中的兩個,所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關,但與q無關故選:.【考點】本題考查了二次函數(shù)的最值問題,掌握二次函數(shù)的性質、靈活運用配方法是解題的關鍵.5、B【解析】【分析】由題意可知,每個同學需贈送出(x-1)件標本,x名同學需贈送出x(x-1)件標本,即可列出方程.【詳解】解:由題意可得,x(x-1)=182,故選B.【考點】本題主要考查了一元二次方程的應用,審清題意、確定等量關系是解答本題的關鍵.二、多選題1、ABCE【解析】【分析】證明可判斷證明是等邊三角形,可判斷利用是等邊三角形,證明可判斷由是等邊三角形,可得四邊形的面積,可判斷如圖,將繞點逆時針旋轉與重合,對應,同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,從而可判斷【詳解】解:由題意得:為等邊三角形,△BO′A可以由△BOC繞點B逆時針旋轉60°得到,故符合題意;如圖,連接,由是等邊三角形,則點O與O′的距離為4,故符合題意;故符合題意;如圖,過作于是等邊三角形,S四邊形AOBO′=故不符合題意;如圖,將繞點逆時針旋轉與重合,對應,同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,同理可得:故符合題意;故選:【考點】本題考查的是等邊三角形的判定與性質,旋轉的性質,勾股定理與勾股定理的逆定理的應用,全等三角形的判定與性質,熟練的做出正確的輔助線是解題的關鍵.2、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標函數(shù)圖象到原函數(shù)圖象方向正好相反.3、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項B成立;∴AB=2BC,故選項C成立;∴∠A=∠C,∴DA=DC,故選項A成立;綜上所述,故選項ABCD均成立,故選:ABCD.【考點】本題考查了圓的有關性質的綜合應用,在本題中借用切線的性質,求得相應角的度數(shù)是解題的關鍵.4、ABC【解析】【分析】根據(jù)一元二次方程的定義逐個判斷即可.【詳解】解:A、是一元二次方程,故本選項符合題意;B、是一元二次方程,故本選項符合題意;C、是一元二次方程,故本選項符合題意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本選項不符合題意;故選:【考點】本題考查了一元二次方程的定義,能熟記一元二次方程的定義的內容是解此題的關鍵,注意:只含有一個未知數(shù),并且所含未知數(shù)的項的次數(shù)最高是2的整式.5、ABD【解析】【分析】由已知二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應值可知:x=-3與x=

5時,都是y

=

7,由拋物線的對稱性可知:拋物線的對稱軸為直線x=,根據(jù)對稱軸和圖表可得到頂點坐標,拋物線與y軸的交點坐標,拋物線與x軸的另一個交點坐標以及x=﹣1時,對應的函數(shù)值,判斷即可.【詳解】由已知二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應值可知:x=-3與x=

5時,都是y

=

7,由拋物線的對稱性可知:拋物線的對稱軸為直線x=,拋物線的頂點坐標為(1,-

9),A正確,符合題意;由圖表可知拋物線與y軸的交點坐標為(0,-8),B正確,符合題意;拋物線過點(-2,0),根據(jù)拋物線的對稱性可知:拋物線與x軸的另一個交點坐標為(4,0),C錯誤,不符合題意;由拋物線的對稱性可知:當x=-1時,對應的函數(shù)值與x=3時相同,對應的函數(shù)值y

=-5,D正確,符合題意,故答案為:ABD.【考點】此題主要考查了二次函數(shù)的性質,解題的關鍵是熟練掌握拋物線的圖象和性質,同時會根據(jù)圖象得到信息.三、填空題1、2≤a≤4.【解析】【分析】先求得拋物線的解析式,根據(jù)二次函數(shù)的性質以及二次函數(shù)圖象上點的坐標特征即可得到a的取值范圍.【詳解】解:∵二次函數(shù)y=-x2+mx+3過點(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴拋物線開口向下,對稱軸是x=2,頂點為(2,7),函數(shù)有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵當0≤x≤a時,y有最大值7,最小值3,∴2≤a≤4.故答案為:2≤a≤4.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標特征,熟練掌握二次函數(shù)的性質是解題的關鍵.2、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關鍵.3、或【解析】【分析】設門的寬為x尺,則門的高為(x+6)尺,利用勾股定理,即可得出關于x的一元二次方程,此題得解.【詳解】解:設門的寬為x尺,則門的高為(x+6)尺,依題意得:即或.故答案為:或.【考點】本題考查了由實際問題抽象出一元二次方程以及勾股定理的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.4、8【解析】【分析】過點A作于M,由已知得出,得出,由等邊三角形的性質得出,,得出,在中,由勾股定理得出,當正方形DEFG繞點D旋轉到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【詳解】過點A作于M,∵,∴,∴,∵是等邊三角形,∴,∵,∴,∴,在中,,當正方形DEFG繞點D旋轉到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,,∴在中,;故答案為8.【考點】本題考查了旋轉的性質、正方形的性質、等邊三角形的性質、勾股定理以及最小值問題;熟練掌握正方形的性質和等邊三角形的性質是解題的關鍵.5、c>a>b【解析】【分析】根據(jù)概率公式分別求出各事件的概率,故可求解.【詳解】依題意可得從該班同學的學號中隨意抽取1名同學,設這名同學是女生的可能性為,這名同學喜歡數(shù)學的可能性為,這名同學喜歡體育的可能性為,∵>>∴a,b,c的大小關系是c>a>b故答案為:c>a>b.【考點】本題考查概率公式的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.四、解答題1、(1)-1;(2)(0,-3)與(2,-3).【解析】【分析】(1)根據(jù)拋物線的頂點的縱坐標是?2,可以求得m的值;(2)根據(jù)當m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標系中的兩個定點,可以求得這兩個定點的坐標.【詳解】解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,拋物線的頂點的縱坐標是-2,∴-m-3=-2,解得m=-1,即m的值是-1;(2)∵當m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標系中的兩個定點,當m=1時,y=x2-2x-3;當m=2時,y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴這兩個定點為(0,-3)與(2,-3).【考點】本題考查二次函數(shù)的性質、二次函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,利用數(shù)形結合的思想和二次函數(shù)的性質解答.2、(1)見詳解;(2)【解析】【分析】(1)根據(jù)一元二次方程根的判別式可直接進行求解;(2)利用一元二次方程根與系數(shù)的關系可直接進行求解.【詳解】(1)證明:∵,∴,∴,∵,∴,∴不論m取何值,方程總有兩個不相等的實數(shù)根;(2)解:∵,∴,∵方程有兩個實數(shù)根為,,∴,∵,∴,解得:.【考點】本題主要考查一元二次方程根的判別式及根與系數(shù)的關系,熟練掌握一元二次方程根的判別式及根與系數(shù)的關系是解題的關鍵.3、(1)每個冰墩墩鑰匙扣的進價為12元(2)①,最大值為1960元;②每個冰墩墩玩偶售價x的范圍為:【解析】【分析】(1)設每個冰墩墩鑰匙扣的進價為x元,根據(jù)題意列出分式方程,進而計算求解即可;(2)①根據(jù)題意列出一次函數(shù)關系,根據(jù)一次函數(shù)的性質求得最大利潤即可;②根據(jù)題意列出方程,根據(jù)二次函數(shù)的性質求得的范圍,根據(jù)題意取整數(shù)解即可.(1)設每個冰墩墩鑰匙扣的進價為x元,由題意得:,解得,經(jīng)檢驗,是原方程的解且符合題意,答:每個冰墩墩鑰匙扣的進價為12元;(2)①∵且x是大于20的正整數(shù)∴當時,w有最大值,最大值為1960元②售價為24元或25元或26元或27元或28元.解析如下:②由題意得,,解得或29∵拋物線開口向下,x是大于20的正整數(shù)∴當時,每周總利潤不低于1870元,【考點】本題考查了分式方程的應用,二次函數(shù)的應用,一次函數(shù)的應用,根據(jù)題意列出方程或關系式是解題的關鍵.4、(1)y=,(2)w=,在這15天中,第9天銷售額達到最大,最大銷售額是3600元,(3)第13天、第14天、第15天這3天,專柜處于虧損狀態(tài).【解析】【分析】(1)用待定系數(shù)法可求與的函數(shù)關系式;(2)利用總銷售額=銷售單價×銷售量,分三種情況,找到(元)關于(天)的函數(shù)解析式,然后根據(jù)函數(shù)的性質即可找到最大值.(3)先根據(jù)第(2)問的結論判斷出在這三段內哪一段內會出現(xiàn)虧損,然后列出不等式求出x的范圍,即可找到答案.【詳解】解:(1)當時,設直線的表達式為將代入到表達式中得解得∴當時,直線的表達式為∴y=,(2)由已知得:w=py.當1≤x≤5時,w=py=(-x+15)(20x+180)=-20x2+120x+2700=-20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論