考點(diǎn)解析-福建省龍海市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)訓(xùn)練試卷(詳解版)_第1頁(yè)
考點(diǎn)解析-福建省龍海市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)訓(xùn)練試卷(詳解版)_第2頁(yè)
考點(diǎn)解析-福建省龍海市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)訓(xùn)練試卷(詳解版)_第3頁(yè)
考點(diǎn)解析-福建省龍海市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)訓(xùn)練試卷(詳解版)_第4頁(yè)
考點(diǎn)解析-福建省龍海市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)訓(xùn)練試卷(詳解版)_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省龍海市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,△OAB的頂點(diǎn)O(0,0),頂點(diǎn)A,B分別在第一、四象限,且AB⊥x軸,若AB=6,OA=OB=5,則點(diǎn)A的坐標(biāo)是(

)A. B. C. D.2、如圖,已知點(diǎn)E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.803、《九章算術(shù)》中的“折竹抵地”問(wèn)題:今有竹高一丈,末折抵地,去根六尺.問(wèn)折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠(yuǎn),問(wèn)折斷處離地面的高度是多少?設(shè)折斷處離地面的高度為尺,則可列方程為(

)A. B.C. D.4、如圖,在由邊長(zhǎng)為1的7個(gè)正六邊形組成的網(wǎng)格中,點(diǎn)A,B在格點(diǎn)上.若再選擇一個(gè)格點(diǎn)C,使△ABC是直角三角形,且每個(gè)直角三角形邊長(zhǎng)均大于1,則符合條件的格點(diǎn)C的個(gè)數(shù)是(

)A.2 B.4 C.5 D.65、在中,,,,的對(duì)邊分別是a,b,c,若,,則的面積是(

)A. B. C. D.6、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,那么小巷的寬度為(

)A.0.7米 B.1.5米 C.2.2米 D.2.4米7、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對(duì)角C處捕食,則它爬行的最短距離是()A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_(kāi)______.2、如圖,在中,,分別以,,邊為直徑作半圓,圖中陰影部分在數(shù)學(xué)史上稱為“希波克拉底月牙”,當(dāng),時(shí),陰影部分的面積為_(kāi)_______.3、對(duì)角線互相垂直的四邊形叫做“垂美”四邊形,現(xiàn)有如圖所示的“垂美”四邊形ABCD,對(duì)角線AC、BD交于點(diǎn)O.若AD=3,BC=5,則____________.4、如圖,在的正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),點(diǎn)、、均在格點(diǎn)上,則______.5、如圖,滑竿在機(jī)械槽內(nèi)運(yùn)動(dòng),∠ACB為直角,已知滑竿AB長(zhǎng)2.5米,頂點(diǎn)A在AC上滑動(dòng),量得滑竿下端B距C點(diǎn)的距離為1.5米,當(dāng)端點(diǎn)B向右移動(dòng)0.5米時(shí),滑竿頂端A下滑________米.6、如圖,在中,,于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)落在CD的延長(zhǎng)線上.若,,則的面積為_(kāi)_________.7、如圖1,鄰邊長(zhǎng)為2和6的矩形分割成①,②,③,④四塊后,拼接成如圖2不重疊、無(wú)縫隙的正方形,則圖2中的值為_(kāi)__________,圖1中的長(zhǎng)為_(kāi)______.8、小聰準(zhǔn)備測(cè)量河水的深度,他把一根竹竿插到離岸邊遠(yuǎn)的水底,竹竿高出水面,把竹竿的頂端拉向岸邊,竹竿頂和岸邊的水面剛好相齊,則河水的深度為_(kāi)_________.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,是一塊草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求這塊草坪的面積.2、勾股定理被譽(yù)為“幾何明珠”,在數(shù)學(xué)的發(fā)展歷程中占有舉足輕重的地位.它是初中數(shù)學(xué)中的重要知識(shí)點(diǎn)之一,也是初中學(xué)生以后解決數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題中常常運(yùn)用到的重要知識(shí),因此學(xué)好勾股定理非常重要.學(xué)習(xí)數(shù)學(xué)“不僅要知其然,更要知其所以然”,所以,我們要學(xué)會(huì)勾股定理的各種證明方法.請(qǐng)你利用如圖圖形證明勾股定理:已知:如圖,四邊形ABCD中,BD⊥CD,AE⊥BD于點(diǎn)E,且△ABE≌△BCD.求證:AB2=BE2+AE2.3、數(shù)學(xué)中,常對(duì)同一個(gè)量(圖形的面積、點(diǎn)的個(gè)數(shù)等)用兩種不同的方法計(jì)算,從而建立相等關(guān)系,我們把這種思想叫“算兩次”.“算兩次”也稱作富比尼原理,是一種重要的數(shù)學(xué)思想,由它可以推導(dǎo)出很多重要的公式.(1)如圖1,是一個(gè)長(zhǎng)為,寬為的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖2的方式拼成一個(gè)正方形.①用“算兩次”的方法計(jì)算圖2中陰影部分的面積:第一次列式為,第二次列式為,因?yàn)閮纱嗡兴闶奖硎镜氖峭粋€(gè)圖形的面積,所以可以得出等式;②在①中,如果,,請(qǐng)直接用①題中的等式,求陰影部分的面積;(2)如圖3,兩個(gè)邊長(zhǎng)分別為,,的直角三角形和一個(gè)兩條直角邊都是的直角三角形拼成一個(gè)梯形,用“算兩次”的方法,探究,,之間的數(shù)量關(guān)系.4、已知,如圖,,C為上一點(diǎn),與相交于點(diǎn)F,連接.,.(1)求證:;(2)已知,,,求的長(zhǎng)度.5、如圖,在正方形ABCD中,E是邊AB上的一動(dòng)點(diǎn),點(diǎn)F在邊BC的延長(zhǎng)線上,且,連接DE,DF.(1)求證:;(2)連接EF,取EF中點(diǎn)G,連接DG并延長(zhǎng)交BC于H,連接BG.①依題意,補(bǔ)全圖形;②求證:;③若,用等式表示線段BG,HG與AE之間的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論.6、如圖所示,在中,,,,為邊上的中點(diǎn).(1)求、的長(zhǎng)度;(2)將折疊,使與重合,得折痕;求、的長(zhǎng)度.7、在邊長(zhǎng)為8的等邊ABC中,點(diǎn)D是邊AB上的一動(dòng)點(diǎn),點(diǎn)E在邊AC上,且CE=2AD,射線DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°交BC邊于F.(1)如圖1,求證:∠AED=∠BDF;(2)如圖2,在射線DF上取DP=DE,連接BP,①求∠DBP的度數(shù);②取邊BC的中點(diǎn)M,當(dāng)PM取最小值時(shí),求AD的長(zhǎng).-參考答案-一、單選題1、D【解析】【分析】利用HL證明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【詳解】解:∵AB⊥x軸,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴點(diǎn)A的坐標(biāo)是(4,3),故選:D.【考點(diǎn)】本題考查了坐標(biāo)與圖形,全等三角形的判定和性質(zhì),勾股定理,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.2、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.3、D【解析】【分析】先畫(huà)出三角形,根據(jù)勾股定理和題目設(shè)好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設(shè)折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點(diǎn)】本題考查勾股定理的方程思想,解題的關(guān)鍵是根據(jù)題意利用勾股定理列出方程.4、D【解析】【分析】分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°時(shí),分別畫(huà)出符合條件的圖形,即可解答.【詳解】解:分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°如圖符合條件的格點(diǎn)C的個(gè)數(shù)是6個(gè)故選:D.【考點(diǎn)】本題考查正多邊形和圓的性質(zhì)、直角三角形的判定與性質(zhì)、直徑所對(duì)的圓周角是90°等知識(shí),是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.5、A【解析】【分析】根據(jù)題意可知,的面積為,結(jié)合已知條件,根據(jù)完全平方公式變形求值即可.【詳解】解:中,,,,所對(duì)的邊分別為a,b,c,,∵,,∴,,故A正確.故選:A.【考點(diǎn)】本題主要考查了勾股定理,完全平方公式變形求值,解題的關(guān)鍵是將完全平方公式變形求出ab的值.6、C【解析】【分析】在直角三角形中利用勾股定理計(jì)算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選:C.【考點(diǎn)】本題考查勾股定理的運(yùn)用,利用梯子長(zhǎng)度不變找到斜邊是關(guān)鍵.7、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開(kāi),利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開(kāi),展開(kāi)圖如圖所示,點(diǎn)A、C之間的最短距離為線段AC的長(zhǎng).在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長(zhǎng),AD=π,∴AC=,故選C.【考點(diǎn)】本題考查了平面展開(kāi)-最短路徑問(wèn)題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開(kāi),并利用勾股定理解答.二、填空題1、8【解析】【分析】作交的延長(zhǎng)于點(diǎn),在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長(zhǎng)于點(diǎn),則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點(diǎn)】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關(guān)鍵.2、24【解析】【分析】根據(jù)勾股定理得到AC2=AB2-BC2,先求解AC,再根據(jù)陰影部分的面積等于直角三角形的面積加上以AC,BC為直徑的半圓面積,再減去以AB為直徑的半圓面積即可.【詳解】解:由勾股定理得,AC2=AB2-BC2=64,則陰影部分的面積,故答案為24.【考點(diǎn)】本題考查的是勾股定理、半圓面積計(jì)算,掌握勾股定理和半圓面積公式是解題的關(guān)鍵.3、34【解析】【分析】在Rt△COB和Rt△AOB中,根據(jù)勾股定理得BO2+CO2=CB2,OD2+OA2=AD2,進(jìn)一步得BO2+CO2+OD2+OA2=9+25,再根據(jù)AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34.【詳解】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根據(jù)勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34;故答案為:34.【考點(diǎn)】本題考查勾股定理的應(yīng)用,熟練掌握勾股定理在實(shí)際問(wèn)題中的應(yīng)用,從題中抽象出勾股定理這一數(shù)學(xué)模型是解題關(guān)鍵.4、45°##45度【解析】【分析】取正方形網(wǎng)格中格點(diǎn)Q,連接PQ和BQ,證明∠AQB=90°,由勾股定理計(jì)算PQ=QB,進(jìn)而得到△QPB為等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【詳解】解:取正方形網(wǎng)格中格點(diǎn)Q,連接PQ和BQ,如下圖所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA2=22+42=20,QB2=22+12=5,AB2=52=25,∴QA2+QB2=20+5=25=AB2,∴△QAB為直角三角形,∠AQB=90°,∵PQ2=22+12=5=QB2,∴△PQB為等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案為:45°.【考點(diǎn)】本題考查了勾股定理及逆定理、三角形全等的判定等,熟練掌握勾股定理及逆定理是解決本類題的關(guān)鍵.5、0.5【解析】【詳解】結(jié)合題意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案為0.5.點(diǎn)睛:本題考查正確運(yùn)用勾股定理.善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.6、【解析】【分析】在△ABC中由等面積求出,進(jìn)而得到,設(shè)BE=x,進(jìn)而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點(diǎn)】本題考查了勾股定理求線段長(zhǎng)、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長(zhǎng).7、

【解析】【分析】由等積法解得正方形的邊長(zhǎng),再利用勾股定理解得圖④的直角邊FH的長(zhǎng),在圖2中,利用正弦的定義解得,接著利用勾股定理解得,據(jù)此解得的值,最后利用解答即可.【詳解】解:矩形的面積為:2×6=12正方形的邊長(zhǎng)如圖1,如圖2,設(shè)或(舍去)故答案為:,.【考點(diǎn)】本題考查正方形與矩形、圖形的拼接,涉及勾股定理、正弦、余弦等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.8、2【解析】【分析】根據(jù)河水深度、竹竿到岸邊的距離、竹竿長(zhǎng)構(gòu)成直角三角形,利用勾股定理進(jìn)行計(jì)算即可.【詳解】根據(jù)題意畫(huà)出示意圖,如圖,則AC=0.5m,,,所以BC即為河水深度,,∵,∴是直角三角形,∴,∴,解得:BC=2(m),故答案為:2.【考點(diǎn)】本題考查了勾股定理,根據(jù)題意畫(huà)示意圖找出與所求邊長(zhǎng)相關(guān)線段所構(gòu)成直角三角形是解題關(guān)鍵.三、解答題1、216平方米【解析】【分析】連接AC,根據(jù)勾股定理計(jì)算AC,根據(jù)勾股定理的逆定理判定三角形ABC是直角三角形,根據(jù)面積公式計(jì)算即可.【詳解】連接AC,∵AD=12,CD=9,∠ADC=90°,∴AC==15,∵AB=39,BC=36,AC=15∴,∴∠ACB=90°,∴這塊空地的面積為:==216(平方米),故這塊草坪的面積216平方米.【考點(diǎn)】本題考查了勾股定理及其逆定理,熟練掌握定理并靈活運(yùn)用是解題的關(guān)鍵.2、證明見(jiàn)解析【解析】【分析】連接AC,根據(jù)四邊形ABCD面積的兩種不同表示形式,結(jié)合全等三角形的性質(zhì)即可求解.【詳解】解:連接AC,∵△ABE≌△BCD,∴AB=BC,AE=BD,BE=CD,∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴S四邊形ABCD=,又∵S四邊形ABCD=,,∴AB2=AE2+BD?BE-BE?DE,∴AB2=AE2+(BD-DE)?BE,即AB2=BE2+AE2.【考點(diǎn)】本題考查了勾股定理的證明,解題時(shí),利用了全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等的性質(zhì).3、(1)①,,;或,,;②9;(2)【解析】【分析】(1)①第一次求解陰影部分的邊長(zhǎng),再計(jì)算面積,第二次利用大的正方形的面積減去四個(gè)長(zhǎng)方形的面積,從而可建立等式;②直接利用公式,再整體代入求值即可;(2)第一次利用梯形的面積公式計(jì)算,第二次利用圖形的面積和計(jì)算,從而得到公式,再整理即可得到答案.【詳解】解:(1)因?yàn)樾≌叫蔚倪呴L(zhǎng)為:所以第一次計(jì)算的面積為:,第二次計(jì)算的面積為:,所以:;或,,②∵,∴(3)第一次利用梯形的面積公式圖形面積為:第二次利用圖形的面積和計(jì)算為:整理得:【考點(diǎn)】本題考查的是利用幾何圖形的面積推導(dǎo)代數(shù)公式,掌握等面積法推導(dǎo)兩個(gè)完全平方公式之間的關(guān)系,推導(dǎo)勾股定理是解題的關(guān)鍵.4、(1)證明見(jiàn)解析;(2)【解析】【分析】(1)先證明再結(jié)合證明從而可得結(jié)論;(2)先證明再證明從而利用等面積法可得的長(zhǎng)度.【詳解】解:(1),而(2),,,【考點(diǎn)】本題考查的是三角形的外角的性質(zhì),平行線的性質(zhì)與判定,勾股定理的逆定理的應(yīng)用,證明是解本題的關(guān)鍵.5、(1)見(jiàn)解析(2)①見(jiàn)解析;②見(jiàn)解析;③BG2+HG2=4AE2.【解析】【分析】(1)證△ADE≌△CDF(SAS),得∠ADE=∠CDF,再證∠EDF=90°,即可得出結(jié)論;(2)①依題意,補(bǔ)全圖形即可;②由直角三角形斜邊上的中線性質(zhì)得DG=EF,BG=EF,即可得出結(jié)論;③先證△DEF是等腰直角三角形,得∠DEG=45°,再證DG⊥EF,DG=EF=EG,BG=EF=EG=FG,得∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,然后證△CDH≌△CDF(ASA),得CH=CF,再由勾股定理即可求解.(1)證明:∵四邊形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,即∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DE⊥DF;(2)①解:依題意,補(bǔ)全圖形如圖所示:②證明:由(1)可知,△DEF和△BEF都是直角三角形,∵G是EF的中點(diǎn),∴DG=EF,BG=EF,∴BG=DG;③BG2+HG2=4AE2,證明:由(1)可知,△ADE≌△CDF,DE⊥DF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DEG=45°,∵G為EF的中點(diǎn),∴DG⊥EF,DG=EF=EG,BG=EF=EG=FG,∴∠EGD=∠HGF=∠DGF=90°,∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,∵∠EGB=45°,∴∠GBF=∠GFB=22.5°,∵∠DHF+∠HFG=∠DHF+∠CDH=90°,∴∠HFG=∠CDH=22.5°,∴∠CDF=∠GDF?∠HDC=22.5°=∠CDH,又∵∠DCH=∠DCF=90°,CD=CD,∴△CDH≌△CDF(ASA),∴CH=CF,在Rt△GHF中,由勾股定理得:GF2+HG2=HF2,∵HF=2CF=2AE,GF=BG,∴BG2+HG2=(2AE)2,∴BG2+HG2=4AE2.【考點(diǎn)】本題是四邊形綜合題,考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、直角三角形斜邊上的中線性質(zhì)、等腰三角形的性質(zhì)等知識(shí);熟練掌握正方形的性質(zhì)和等腰直角三角形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵,屬于中考??碱}型.6、(1)BD=2,;(2),【解析】【分析】(1)由勾股定理求出BC=4,再根據(jù)中點(diǎn)的性質(zhì)可得到BD,然后再一次運(yùn)用勾股定理求出AD即可;(2)設(shè),則,,利用勾股定理列出方程解,從而得解.【詳解】(1)∵在中,,,∴在中,∴又∵為邊上的中點(diǎn)∴∴在中,∴(2)折疊后如圖所示,為折痕,聯(lián)結(jié)設(shè),則,在中,,即解得:∴∴【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,也考查了折疊的性質(zhì).是常見(jiàn)中考題型.7、(1)見(jiàn)解析;(2)①30°;②2【解析】【分析】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論