版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
青島版8年級數(shù)學下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、不等式組x+3>1?3x≥?3A. B.C. D.2、下列二次根式中,最簡二次根式是()A. B. C. D.3、小明從家出發(fā)向正北方向走了150m,接著向正東方向走到離家直線距離為250m遠的地方,那么小明向正東方向走的路程是()A.250m B.200m C.150m D.100m4、下列各數(shù)是無理數(shù)的是(
)A.﹣ B.﹣1 C.﹣ D.05、數(shù)學世界中充滿了許多美妙的幾何圖形,等待著你去發(fā)現(xiàn),如圖是張老師用幾何畫板畫出的四個圖形,其中既是軸對稱圖形又是中心對稱圖形的是(
)A.①勾股樹 B.②分形樹C.③謝爾賓斯三角形 D.④雪花6、若定義一種新的取整符號[
],即[x]表示不超過x的最大整數(shù).例如:,.則下列結(jié)論正確的是(
)①;
②;③方程的解有無數(shù)多個;④若,則x的取值范圍是;⑤當時,則的值為0、1或2.A.①②③ B.①②④ C.①③⑤ D.①③④7、下列命題正確的是(
)A.無理數(shù)就是開方開不盡的數(shù) B.全等三角形對應邊上的中線相等C.如果,那么 D.實數(shù)都有兩個平方根8、如果關于的不等式的解集是,那么數(shù)應滿足的條件是(
)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在平面直角坐標系xOy中,矩形OABC的頂點B坐標為(12,5),D是CB邊上一動點,(D不與BC重合),以AD為邊作正方形ADEF,連接BE、BF,若為等腰三角形,則正方形ADEF的邊長_____.2、已知函數(shù)y1=-2x與y2=x+b的圖像相交于點A(-1,2),則關于x的不等式-2x>x+b的解集是_____.3、如圖,矩形紙片ABCD中,AB=6,BC=10,先按圖②操作:將矩形紙片ABCD沿過點A的直線折疊,使點B落在邊AD上的點E處,折痕為AF;再按圖③操作,沿過點E的直線折疊,使點D落在EF上的點H處,折痕為EG,則FH=_____.4、如圖,已知正方形ABCD的邊長為5,對角線AC,BD交于點O,點E為BC邊上一點,連接DE,取DE的中點F,連接OF,CF.若OF=1.5,則點O到CF的距離為____.5、點(—3,—4)關于原點對稱的點坐標是____.6、小明想測量旗桿的高度,他先將升旗的繩子拉到旗桿底端,并在繩子對應旗桿底端的位置上打了一個結(jié),然后將繩子拉到離旗桿底部4m處,繩頭恰好接觸到底面,他發(fā)現(xiàn)此時繩頭距打結(jié)處約1m,小明計算出旗桿的高度為_____m.7、如圖,在Rt△ABC中,∠C=90°,AC=6,∠B=30°,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是_____.三、解答題(7小題,每小題10分,共計70分)1、如圖,已知△ABC是銳角三角形(AC<AB)(1)①請在圖1中用圓規(guī)和無刻度的直尺作出點O,使O到△ABC三邊距離相等;(不寫作法,保留作圖痕跡)②在①的條件下,若AB=15,AC=13,BC=14,則△ABC中BC邊上的高=______,O到△ABC三邊距離=______.(2)在△ABC中,若點P在△ABC內(nèi)部(含邊界)且滿足PC≤PB≤PA,請在圖2中用圓規(guī)和無刻度的直尺作出所有符合條件的點P組成的區(qū)域(用陰影表示).(不寫作法,保留作圖痕跡)2、某學校為進一步做好疫情防控工作,計劃購進A,B兩種口罩.已知每箱A種口罩比每箱B種口罩多10包,每箱A種口罩和每箱B種口罩的價格分別是630元和600元,而每包A種口罩和每包B種口罩的價格分別是這一批口罩平均每包價格的0.9倍和1.2倍.(1)求這一批口罩平均每包的價格是多少元.(2)如果購進A,B兩種口罩共5500包,最多購進3500包A種口罩,為了使總費用最低,應購進A種口罩和B種口罩各多少包?總費用最低是多少元?3、已知:在菱形中,點E,O,F(xiàn)分別為AB,AC,AD的中點,連接,.求證:;4、如圖,在△ABC中,∠ACB=90°,BC>AC,CD⊥AB于點D,點E是AB的中點,連接CE.(1)若AC=3,BC=4,求CD的長;(2)求證:BC2﹣AC2=2DE?AB;(3)求證:CE=AB.5、如圖1,在Rt△ABC中,∠ACB=90°,E是邊AC上任意一點(點E與點A,C不重合),以CE為一直角邊作Rt△ECD,∠ECD=90°,連接BE,AD.若AC=BC,CE=CD.(1)猜想線段BE,AD之間的數(shù)量關系及所在直線的位置關系,寫出結(jié)論并說明理由;(2)現(xiàn)將圖1中的Rt△ECD繞著點C順時針旋轉(zhuǎn)銳角α,得到圖2,請判斷①中的結(jié)論是否仍然成立,若成立,請證明;若不成立,請說明理由.6、小明與小紅開展讀書比賽.小明找出了一本以前已讀完84頁的古典名著打算繼續(xù)往下讀,小紅上個周末恰好剛買了同一版本的這本名著,不過還沒開始讀.于是,兩人開始了讀書比賽.他們利用右表來記錄了兩人5天的讀書進程.例如,第5天結(jié)束時,小明還領先小紅24頁,此時兩人所讀到位置的頁碼之和為424.已知兩人各自每天所讀頁數(shù)相同.讀書天數(shù)12345頁碼之差7260483624頁碼之和152220424(1)表中空白部分從左到右2個數(shù)據(jù)依次為,;(2)小明、小紅每人每天各讀多少頁?(3)已知這本名著有488頁,問:從第6天起,小明至少平均每天要比原來多讀幾頁,才能確保第10天結(jié)束時還不被小紅超過?(答案取整數(shù))7、如圖所示(1)寫出ABC三頂點的坐標;(2)在圖上描出點A1(3,3),B1(2,﹣2),C1(4,﹣1),并說明ABC與A1B1C1的位置關系.-參考答案-一、單選題1、B【解析】【分析】先分別求出各不等式的解集,再求其公共解集即可.【詳解】解:,由①得x>﹣2,由②得x≤1,不等式組的解集為﹣2<x≤1.故選:B.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.2、C【解析】【分析】最簡二次根式是滿足下列兩個條件的二次根式:1.被開方數(shù)的因數(shù)是整數(shù),因式為整式;2.被開方因數(shù)因式不能再被開方.【詳解】A.0.3=B.,故B不是最簡二次根式;C是最簡二次根式;D.,故D不是最簡二次根式,故選:C.【點睛】本題考查最簡二次根式,是基礎考點,難度較易,掌握相關知識是解題關鍵.3、B【解析】【分析】根據(jù)題意畫出圖形,進而利用勾股定理得出答案.【詳解】解:如圖所示:由題意可得:,由勾股定理得,故選B【點睛】此題考查了勾股定理的應用,解題的關鍵是理解題意,正確畫出圖形.4、A【解析】【分析】根據(jù)無理數(shù)的定義,“無限不循環(huán)的小數(shù)是無理數(shù)”逐個分析判斷即可.【詳解】解:A.﹣是無理數(shù),符合題意,
B.﹣1是有理數(shù),不符合題意,
C.﹣是有理數(shù),不符合題意,D.0是有理數(shù),不符合題意,故選A【點睛】本題考查了無理數(shù),解答本題的關鍵掌握無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有的數(shù).5、D【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項分析判斷即可得解.把一個圖形繞某一點旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A、①既不是軸對稱圖形,也不是中心對稱圖形,故本選項不符合題意;B、②是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;C、③是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;D、④既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.6、D【解析】【分析】根據(jù)定義“[x]表示不超過x的最大整數(shù)”直接判斷①②,根據(jù)可以的值可以為不超過x的最大整數(shù)與比這個數(shù)大1的數(shù)之間的任何數(shù),即可判斷③,根據(jù)定義可得,解不等式組即可判斷④,根據(jù)的不同取值即可判斷⑤.【詳解】解:,故①正確,,故②錯誤,方程的解有無數(shù)多個,故③正確,若,即,則x的取值范圍是,故④正確,當時,當時,,當為的小數(shù)時,,則的值為1、2,故⑤錯誤,故選D【點睛】本題考查了新定義,解一元一次不等式組,理解新定義是解題的關鍵.7、B【解析】【分析】根據(jù)無理數(shù)的定義,全等三角形的性質(zhì),實數(shù)的平方根,立方根對各選項進行判斷即可.【詳解】解:A中開方開不盡的數(shù)是無理數(shù),錯誤,不符合題意;B中全等三角形對應邊相等,對應的中線也相等,正確,符合題意;C中,當時,,錯誤,不符合題意;D中正實數(shù)有兩個平方根,0有一個,負實數(shù)沒有平方根,錯誤,不符合題意;故選B.【點睛】本題考查了實數(shù)的平方根、立方根,無理數(shù)、全等三角形的性質(zhì),判斷命題真假等知識.解題的關鍵在于對知識的靈活運用.8、B【解析】【分析】根據(jù)一元一次不等式的解可得,由此即可得出答案.【詳解】解:關于的不等式的解集是,,解得,故選:B.【點睛】本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.二、填空題1、或或【解析】【分析】分三種情況討論,由等腰三角形的性質(zhì)和勾股定理可求正方形ADEF的邊長.【詳解】解:若BE=EF,當點B與點D重合時,AD=AB=5,舍去,當點B與點D不重合時,如圖,過點E作EH⊥DB于H,∵∠EDH+∠ADB=90°,∠ADB+∠DAB=90°,∴∠EDH=∠DAB,且AD=DE,∠EHD=∠ABD=90°,∴△ADB≌△DEH(AAS),∴DH=AB=5,∵BE=EF,EF=DE,∴DE=BE,且EH⊥DB,∴DH=BH=5,∴DB=10,∴AD=;當BE=BF時,∴∠BEF=∠BFE,∴∠DEB=∠AFB,且DE=AF,BE=BF,∴△DEB≌△AFB(AAS),∴DB=AB=5,∴AD=;若BF=EF,如圖,過點F作FH⊥AB于H,∵∠DAB+∠FAB=90°,且∠DAB+∠BDA=90°,∴∠BDA=∠FAB,且AD=AF,∠ABD=∠AHF=90°,∴△ABD≌△FHA(AAS),∴AH=DB,∵EF=BF,EF=AF,∴BF=AF,且FH⊥AB,∴AH=BH=,∴DB=,∴AD==,故答案為:或或.【點睛】本題考查了全等三角形的判定和性質(zhì),勾股定理,等腰三角形的性質(zhì),添加恰當輔助線構(gòu)造全等三角形是本題的關鍵.2、x<-1【解析】【分析】在同一坐標系中畫出兩個函數(shù)的圖象,根據(jù)圖象即可得出答案.【詳解】解:函數(shù)y1=-2x與y2=x+b的圖象如圖所示:要滿足-2x>x+b,即y1>y2,則圖象上兩直線交點的左邊符合題意,即x<-1,故答案為:x<-1.【點睛】此題考查了一元一次不等式與一次函數(shù)圖象的關系,用一次函數(shù)的函數(shù)思想求不等式的解集是比較常見的題型,關鍵在于理解不等關系反映在函數(shù)圖象上的幾何意義.3、【解析】【分析】根據(jù)折疊的性質(zhì)可得,,,,進而可得【詳解】解:∵將矩形紙片ABCD沿過點A的直線折疊,使點B落在邊AD上的點E處,折痕為AF;∴,沿過點E的直線折疊,使點D落在EF上的點H處,折痕為EG,故答案為:2【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),等腰三角形的性質(zhì),掌握折疊的性質(zhì)是解題的關鍵.4、【解析】【分析】根據(jù)正方形的性質(zhì)得到CD=BC=5,BO=DO,∠DBC=45°,AC⊥BD,求得∠DOC=90°,OC=CD=,根據(jù)三角形的中位線定理得到OF=BE,OF∥BE,求得BE=3,根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到CF=DE=,過F作FH⊥OC于H,則△OFH是等腰直角三角形,設點O到CF的距離為x,根據(jù)三角形的面積公式即可得到答案.【詳解】解:∵四邊形ABCD是正方形,∴CD=BC=5,BO=DO,∠DBC=45°,AC⊥BD,∴∠DOC=90°,OC=CD=,∵點F是DE的中點,BO=DO,∴OF=BE,OF∥BE,∴∠DOF=∠DBC=45°,∴∠FOC=45°,∵OF=1.5,∴BE=3,∴CE=5﹣3=2,∴DE===,∴CF=DE=,過F作FH⊥OC于H,則△OFH是等腰直角三角形,∴FH=OF=,設點O到CF的距離為x,∵S△COF=OC?FH=CF?x,∴,∴,∴點O到CF的距離為,故答案為:.【點睛】本題考查了正方形的性質(zhì),勾股定理,等腰直角三角形的判定和性質(zhì),三角形的中位線定理,三角形面積公式等知識,正確的作出輔助線是解題的關鍵.5、(3,4)【解析】【分析】根據(jù)關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù),據(jù)此分析即可.【詳解】解:點(—3,—4)關于原點對稱的點坐標是(3,4)故答案為:(3,4)【點睛】本題考查了原點對稱的兩個點的特征,掌握關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù)是解題的關鍵.6、7.5【解析】【分析】先根據(jù)勾股定理建構(gòu)直角三角形,利用勾股定理列拓展的一元一次方程,解方程即可.【詳解】解:如圖設旗桿的高度為xm,則繩長為(x+1)m,根據(jù)勾股定理得:,解方程得x=7.5m,,∴小明計算出旗桿的高度為
7.5m.故答案為7.5.【點睛】本題考查勾股定理,掌握勾股定理構(gòu)圖和勾股定理的應用是解題關鍵.7、【解析】【分析】延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。\用勾股定理求解.【詳解】解:如圖,延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。逜C=6,CF=2,∴AF=AC-CF=4,∵∠B=30°,∠ACB=90°∴∠A=60°∵∠AMF=90°,∴∠AFM=30°,∴AM=AF=2,∴FM==2,∵FP=FC=2,∴PM=MF-PF=2-2,∴點P到邊AB距離的最小值是2-2.故答案為:2-2.【點睛】本題考查了翻折變換,涉及到的知識點有直角三角形兩銳角互余、勾股定理等,解題的關鍵是確定出點P的位置.三、解答題1、(1)①見解析;②12,4(2)見解析【解析】【分析】(1)①作兩內(nèi)角的平分線,得交點O;②作邊上的高,設,則,在中,,在中,根據(jù)勾股定理建立方程,求得,進而勾股定理求得,根據(jù)等面積法求O到△ABC三邊距離即可;(2)作的垂直平分線,根據(jù)滿足PC≤PB≤PA,由PB≤PA,點點離點更近,在的垂直平分線靠進點部分,由PC≤PB,點點離點更近,在垂直平分線靠進點的部分,以及與圍成部分,包括邊界.(1)①如圖所示,即為所求;②如圖所示,作邊上的高,AB=15,AC=13,BC=14,設,則在中,在中,即解得由①可知到三邊距離相等,設到三邊距離為,則即解得故答案為:(2)滿足PC≤PB≤PA的點P組成的區(qū)域(用陰影表示),如圖所示.【點睛】本題考查了作角平分線,垂直平分線,勾股定理,掌握角平分線的性質(zhì)與垂直平分線的性質(zhì)是解題的關鍵.2、(1)20元(2)購進A種口罩3500包,B種口罩2000包時,能使總費用最低,總費用最低是111000元.【解析】【分析】(1)設這一批口罩平均每包的價格是x元,根據(jù)“每箱A種口罩比每箱B種口罩多10包,每箱A種口罩和每箱B種口罩的價格分別是630元和600元,而每包A種口罩和每包B種口罩的價格分別是這一批口罩平均每包價格的0.9倍和1.2倍”列分式方程解答即可;(2)設購進A種口罩t包,這批口罩的總費用為w元,根據(jù)題意得出w與t的函數(shù)關系式,再根據(jù)t的取值范圍以及一次函數(shù)的性質(zhì)解答即可.(1)解:設這一批口罩平均每包的價格是x元,根據(jù)題意得:,解得x=20,經(jīng)檢驗,x=20是原方程的解,并符合題意,答:這一批口罩平均每包的價格是20元;(2)解:由(1)可知,A種口罩每包價格為20×0.9=18(元),B種口罩每包價格為20×1.2=24(元),設購進A種口罩t包,這批口罩的總費用為w元,根據(jù)題意得:w=18t+24(5500﹣t)=﹣6t+132000,∵w是t的一次函數(shù),k=﹣6<0,∴w隨t的增大而減小,由∵t≤3500,∴當t=3500時,w最小,此時B種口罩有:5500﹣3500=2000(包),w=﹣6×3500+132000=111000,答:購進A種口罩3500包,B種口罩2000包時,能使總費用最低,總費用最低是111000元.【點睛】此題主要考查了分式方程的應用,一次函數(shù)的應用,正確得出等量關系是解題關鍵.3、見解析【解析】【分析】根據(jù)菱形的性質(zhì)可得,,再由點,,分別為,,的中點,可得,根據(jù)即可證明.【詳解】證明:∵四邊形是菱形,∴,,∵點,,分別為,,的中點,∴在和中,,∴;【點睛】本題考查了菱形的性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握菱形的性質(zhì)和全等三角形的判定是解決問題的關鍵.4、(1)(2)見解析(3)見解析【解析】【分析】(1)根據(jù)勾股定理求出AB,根據(jù)三角形的面積公式計算,求出CD;(2)根據(jù)題意得到BD﹣AD=2DE,根據(jù)勾股定理計算即可證明;(3)延長CE至點F,使EF=CE,連結(jié)AF,證明△AEF≌△BEC(SAS),根據(jù)全等三角形的性質(zhì)得到∠B=∠EAF,AF=BC,再證明△ACF≌△CAB,得到CF=AB,證明結(jié)論.(1)解:在△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB===5,∵∠ACB=90°,CD⊥AB,∴S△ABC=AC?BC=AB?DE,即×3×4=×5×CD,解得:CD=;(2)證明:∵點E是AB的中點,∴AE=BE,∴BD﹣AD=(BE+DE)﹣(AE﹣DE)=BE﹣AE+2DE=2DE,∵CD⊥AB,∴BC2=BD2+CD2,AC2=AD2+CD2,∴BC2﹣AC2=(BD2+CD2)﹣(AD2+CD2)=BD2﹣AD2=(BD+AD)(BD﹣AD)=AB?2DE=2DE?AB;(3)證明:延長CE至點F,使EF=CE,連結(jié)AF,在△AEF和△BEC中,,∴△AEF≌△BEC(SAS),∴∠B=∠EAF,AF=BC,∵∠ACB=90°,∴∠B+∠CAB=∠EAF+∠CAB=90°,∴∠CAF=∠ACB=90°,∵AC=CA,∴△ACF≌△CAB(SAS),∴CF=AB,∵CF=2CE,∴CE=AB.【點睛】本題考查的是全等三角形的判定和性質(zhì)、三角形的面積計算、勾股定理的應用,掌握全等三角形的判定定理和性質(zhì)定理是解題的關鍵.5、(1)BE=AD,BE⊥AD;理由見解析(2)BE=AD,BE⊥AD仍然成立;證明見解析【解析】【分析】(1)延長BE,交AD于點F,證明△BCE≌△ACD,得到∠EBC+∠ADC=90°,從而得到∠BFD=90°即可得證.(2)仿照(1)的思路,證明△ACD≌△BCE,得到∠AFG+∠CAD=90°,從而得證∠AGF=90°.(1)BE=AD,BE⊥AD;理由:在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∵∠EBC+∠BEC=90°,∴∠EBC+∠ADC=90°,延長BE,交AD于點F,∴∠BFD=90°,∴BE⊥AD.(2)BE=AD,BE⊥AD仍然成立;理由:設BE與AC的交點為點F,BE與AD的交點為點G,如圖,∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠CAD=∠CBE.∵∠BFC=∠AFG,∠BFC+∠CBE=90°,∴∠AFG+∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 呼吸科護理工作中的倫理問題
- 《0的認識》教案數(shù)學課件
- 2026年糖尿病足早期篩查與居家護理實務精講
- 全員安全管理責任制度
- 化妝護膚理論培訓班課件
- 2026應急救援員招聘試題及答案
- 酒店業(yè)員工培訓與績效管理手冊
- 汽車整車裝調(diào)工節(jié)假日后復工安全考核試卷含答案
- 煙類作物栽培工節(jié)假日后復工安全考核試卷含答案
- 智能制造設備維護保養(yǎng)指南(標準版)
- 2024-2025學年廣東省廣州市越秀區(qū)八年級上學期期末數(shù)學試卷(含答案)
- (正式版)DB51∕T 3340-2025 《特長公路隧道消防站建設規(guī)范》
- 2026年中職財經(jīng)商貿(mào)類專業(yè)教師資格證面試含答案
- 2026年太原城市職業(yè)技術(shù)學院單招綜合素質(zhì)筆試備考試題附答案詳解
- 陰莖瘺護理課件
- 大型懸臂蓋梁施工方案
- 2026年科技型中小企業(yè)評價入庫代理合同
- 亞馬遜招商策劃方案
- 《JBT 6695-1993 汽輪機潤滑油系統(tǒng) 技術(shù)條件》(2026年)實施指南
- 雨課堂學堂云在線《天網(wǎng)追兇》單元測試考核答案
- 充電樁銷售合同范本
評論
0/150
提交評論