難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)練習(xí)練習(xí)題(含答案詳解)_第1頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)練習(xí)練習(xí)題(含答案詳解)_第2頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)練習(xí)練習(xí)題(含答案詳解)_第3頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)練習(xí)練習(xí)題(含答案詳解)_第4頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)練習(xí)練習(xí)題(含答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,已知,,,則的長(zhǎng)為(

)A.7 B.3.5 C.3 D.22、如圖,在和中,,,,線段BC的延長(zhǎng)線交DE于點(diǎn)F,連接AF.若,,,則線段EF的長(zhǎng)度為(

)A.4 B. C.5 D.3、如圖,在和中,,,,則(

)A.30° B.40° C.50° D.60°4、如圖,在△ABC和△DEF中,AB=DE,ABDE,運(yùn)用“SAS”判定△ABC≌△DEF,需補(bǔ)充的條件是()A.AC=DF B.∠A=∠D C.BE=CF D.∠ACB=∠DFE5、如圖,若,則的理由是(

)A.SAS B.AAS C.ASA D.HL第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,已知BE=DC,請(qǐng)?zhí)砑右粋€(gè)條件,使得△ABE≌△ACD:_____.2、我們定義:一個(gè)三角形最小內(nèi)角的角平分線將這個(gè)三角形分割得到的兩個(gè)三角形它們的面積之比稱為“最小角割比Ω”(),那么三邊長(zhǎng)分別為7,24,25的三角形的最小角割比Ω是______.3、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點(diǎn)P從A點(diǎn)出發(fā)沿A—C—B路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)Q從B點(diǎn)出發(fā)沿B—C—A路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn).點(diǎn)P和Q分別以2和6的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點(diǎn)P的運(yùn)動(dòng)時(shí)間為_______.4、如圖,在△ABC中,點(diǎn)D是AC的中點(diǎn),分別以AB,BC為直角邊向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=NBC=∠90°,連接MN,已知MN=4,則BD=_________.5、如圖,已知AC與BF相交于點(diǎn)E,ABCF,點(diǎn)E為BF中點(diǎn),若CF=8,AD=5,則BD=_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、正方形ABCD中,E為BC上的一點(diǎn),F(xiàn)為CD上的一點(diǎn),,求的度數(shù).2、如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求證:△BCE≌△DCF;(2)求證:AB+AD=2AE.3、如圖,AB=AD=BC=DC,∠C=∠D=∠ABE=∠BAD=90°,點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°,過點(diǎn)A作∠GAB=∠FAD,且點(diǎn)G在CB的延長(zhǎng)線上.(1)△GAB與△FAD全等嗎?為什么?(2)若DF=2,BE=3,求EF的長(zhǎng).4、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.5、如圖,在中,是邊上的一點(diǎn),,平分,交邊于點(diǎn),連接.(1)求證:;(2)若,,求的度數(shù).-參考答案-一、單選題1、C【解析】【分析】利用全等三角形的性質(zhì)求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì),熟知全等三角形對(duì)應(yīng)邊相等是解題的關(guān)鍵.2、B【解析】【分析】證明,,根據(jù)全等三角形對(duì)應(yīng)邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì)、線段的和差等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.3、D【解析】【分析】由題意可證,有,由三角形內(nèi)角和定理得,計(jì)算求解即可.【詳解】解:∵∴△ABC和△ADC均為直角三角形在和中∵∴∴∵∴故選D.【考點(diǎn)】本題考查了三角形全等,三角形的內(nèi)角和定理.解題的關(guān)鍵在于找出角度的數(shù)量關(guān)系.4、C【解析】【分析】證出∠ABC=∠DEF,由SAS即可得出結(jié)論.【詳解】解:補(bǔ)充BE=CF,理由如下:∵AB∥DE,∴∠ABC=∠DEF,若要利用SAS判定,B、D選項(xiàng)不符合要求,若A:AC=DF,構(gòu)成的是SSA,不能證明三角形全等,A選項(xiàng)不符合要求,C選項(xiàng):BE=CF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故選:C.【考點(diǎn)】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知“SAS”的判定的特點(diǎn).5、D【解析】【分析】根據(jù)兩直角三角形全等的判定定理HL推出即可.【詳解】解:∠B=∠C=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故選:D.【考點(diǎn)】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.二、填空題1、∠B=∠C【解析】【分析】根據(jù)全等三角形的判定方法解答即可.【詳解】解:∵BE=DC,∠A=∠A,∴根據(jù)AAS,可以添加∠B=∠C,使得△ABE≌△ACD,故答案為:∠B=∠C.【考點(diǎn)】本題考查全等三角形的判定,解題的關(guān)鍵是熟練掌握全等三角形的判定方法,屬于中考常考題型.2、.【解析】【分析】根據(jù)題意作出圖形,然后根據(jù)角平分線的性質(zhì)得到,再根據(jù)三角形的面積和最小角割比Ω的定義計(jì)算即可.【詳解】解:如圖示,,,,則,根據(jù)題意,作的角平分線交于點(diǎn),過點(diǎn),作交于點(diǎn),過點(diǎn),作交于點(diǎn),則∵,,則()故答案是:.【考點(diǎn)】本題考查了三角形角平分線的性質(zhì)和三角形的面積計(jì)算,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.3、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時(shí)P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時(shí),此時(shí)不存在,④當(dāng)Q到A點(diǎn),與A重合,P在BC上時(shí).【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時(shí)P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時(shí),此時(shí)不存在;理由是:28÷6=,12÷2=6,即Q在AC上運(yùn)動(dòng)時(shí),P點(diǎn)也在AC上運(yùn)動(dòng);④當(dāng)Q到A點(diǎn)(和A重合),P在BC上時(shí),∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點(diǎn)P運(yùn)動(dòng)1或3.5或12時(shí),△PEC與△QFC全等.【考點(diǎn)】本題主要考查對(duì)全等三角形的性質(zhì),解一元一次方程等知識(shí)點(diǎn)的理解和掌握,能根據(jù)題意得出方程是解此題的關(guān)鍵.4、2【解析】【分析】延長(zhǎng)BD到E,使DE=BD,連接AE,證明△ADE≌△CDB(SAS),可得AE=CB,∠EAD=∠BCD,再根據(jù)△ABM和△BCN是等腰直角三角形,證明△MBN≌△BAE,可得MN=BE,進(jìn)而可得BD與MN的數(shù)量關(guān)系即可求解.【詳解】解:如圖,延長(zhǎng)BD到E,使DE=BD,連接AE,∵點(diǎn)D是AC的中點(diǎn),∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB,∠EAD=∠BCD,∵△ABM和△BCN是等腰直角三角形,∴AB=BM,CB=NB,∠ABM=∠CBN=90°,∴BN=AE,又∠MBN+∠ABC=360°-90°-90°=180°,∵∠BCA+∠BAC+∠ABC=180°,∴∠MBN=∠BCA+∠BAC=∠EAD+∠BAC=∠BAE,在△MBN和△BAE中,,∴△MBN≌△BAE(SAS),∴MN=BE,∵BE=2BD,∴MN=2BD.又MN=4,∴BD=2,故答案為:2.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形,解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).5、3【解析】【分析】利用全等三角形的判定定理和性質(zhì)定理可得結(jié)果.【詳解】解:∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵點(diǎn)E為BF中點(diǎn),∴BE=FE,在△ABE與△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=8,∵AD=5,∴BD=3,故答案為:3.【考點(diǎn)】本題主要考查了全等三角形的判定定理和性質(zhì)定理,熟練掌握定理是解答此題的關(guān)鍵.三、解答題1、45°【解析】【分析】延長(zhǎng)EB使得BG=DF,易證△ABG≌△ADF(SAS)可得AF=AG,進(jìn)而求證△AEG≌△AEF可得∠EAG=∠EAF,再求出∠EAG+∠EAF=90°即可解題.【詳解】解:如圖,延長(zhǎng)EB到點(diǎn)G,使得,連接AG.在正方形ABCD中,,,.在和中,,,,.又,在和中,,,.,,,.【考點(diǎn)】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),作出輔助線構(gòu)造出全等三角形是解決此題的關(guān)鍵.2、詳見解析【解析】【分析】(1)由角平分線定義可證△BCE≌△DCF(HL);(2)先證Rt△FAC≌Rt△EAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【詳解】(1)證明:∵AC是角平分線,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【考點(diǎn)】本題考查了全等三角形的判定、性質(zhì)和角平分線定義,注意:全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.3、(1)全等,理由詳見解析;(2)5【解析】【分析】(1)由題意易得∠ABG=90°=∠D,然后問題可求證;(2)由(1)及題意易得△GAE≌△FAE,GB=DF,進(jìn)而問題可求解.【詳解】解:(1)全等.理由如下∵∠D=∠ABE=90°,∴∠ABG=90°=∠D,在△ABG和△ADF中,,∴△GAB≌△FAD(ASA);(2)∵∠BAD=90°,∠EAF=45°,∴∠DAF+∠BAE=45°,∵△GAB≌△FAD,∴∠GAB=∠FAD,AG=AF,∴∠GAB+∠BAE=45°,∴∠GAE=45°,∴∠GAE=∠EAF,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS)∴EF=GE∵△GAB≌△FAD,∴GB=DF,∴EF=GE=GB+BE=FD+BE=2+3=5.【考點(diǎn)】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.4、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據(jù)SAS證△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.試題解析:證明:在邊BC上截取BE=BA,連接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵∠A+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED,∴AD=CD.點(diǎn)睛:本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論