版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、一個(gè)四邊形的各邊之比為1∶2∶3∶4,和它相似的另一個(gè)四邊形的最小邊長(zhǎng)為,則它的最大邊長(zhǎng)為(
)A. B. C. D.2、如圖,Rt△ABC中,,,,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿AB向B點(diǎn)運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,連接DE,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.43、若函數(shù)y=(a﹣1)x2+2x+a2﹣1是二次函數(shù),則()A.a(chǎn)≠1 B.a(chǎn)≠﹣1 C.a(chǎn)=1 D.a(chǎn)=±14、一個(gè)等腰直角三角形的內(nèi)切圓與外接圓的半徑之比為(
)A. B. C. D.5、如圖,點(diǎn)M、N分別是正方形ABCD的邊BC、CD上的兩個(gè)動(dòng)點(diǎn),在運(yùn)動(dòng)過程中保持∠MAN=45°,連接EN、FM相交于點(diǎn)O,以下結(jié)論:①M(fèi)N=BM+DN;②BE2+DF2=EF2;③BC2=BF?DE;④OM=OF()A.①②③ B.①②④ C.②③④ D.①②③④6、已知拋物線P:,將拋物線P繞原點(diǎn)旋轉(zhuǎn)180°得到拋物線,當(dāng)時(shí),在拋物線上任取一點(diǎn)M,設(shè)點(diǎn)M的縱坐標(biāo)為t,若,則a的取值范圍是(
)A. B. C. D.二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖,正方形ABCD的邊長(zhǎng)為8,點(diǎn)E、F分別在邊AD、BC上,將正方形沿EF折疊,使點(diǎn)A落在邊CD上的A′處,點(diǎn)B落在B′處,A′B′交BC于點(diǎn)G.下列結(jié)論正確的是(
)A.當(dāng)A′為CD中點(diǎn)時(shí),tan∠DA′E=B.當(dāng)A′D∶DE∶A′E=3∶4∶5時(shí),A′C=C.連接AA′,則AA′=EFD.當(dāng)A′(點(diǎn)A′不與C、D重合)在CD上移動(dòng)時(shí),△A′CG周長(zhǎng)隨著A′位置變化而變化2、已知Rt△ABC中,∠C=90°,AC=2,BC=3,則下列各式中,不正確的是()A.sinB= B.cosB= C.tanB= D.以上都不對(duì)3、如圖,在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,下面等式中正確的是(
)A. B.C. D.4、在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a、b、c,且a=5,b=12,c=13,下面四個(gè)式子中正確的有()A.sinA= B.cosA= C.tanA= D.sinB=5、下列用尺規(guī)等分圓周的說法中,正確的是(
)A.在圓上依次截取等于半徑的弦,就可以六等分圓B.作相互垂直的兩條直徑,就可以四等分圓C.按A的方法將圓六等分,六個(gè)等分點(diǎn)中三個(gè)不相鄰的點(diǎn)三等分圓D.按B的方法將圓四等分,再平分四條弧,就可以八等分圓周6、如圖,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,且BD=2AD,CE=2AE,則下列結(jié)論中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE7、如圖,□ABCD中,E是AD延長(zhǎng)線上一點(diǎn),BE交AC于點(diǎn)F,交DC于點(diǎn)G,則下列結(jié)論中正確的是()A.△ABE∽△DGE B.△CGB∽△DGEC.△BCF∽△EAF D.△ACD∽△GCF第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、二次函數(shù)的最大值是__________.2、小明的身高為1.6,他在陽(yáng)光下的影長(zhǎng)為2,此時(shí)他旁邊的旗桿的影長(zhǎng)為15,則旗桿的高度為_______.3、如圖,在△ABC中,∠B=45°,tanC=,AB=,則AC=_____.4、如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,直線DE是⊙O的切線,切點(diǎn)為D,交AC于E,若⊙O半徑為1,BC=4,則圖中陰影部分的面積為_____.5、如圖,四邊形內(nèi)接于⊙O若,則_______°.6、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長(zhǎng)=_____.7、舉出一個(gè)生活中應(yīng)用反比例函數(shù)的例子:______.四、解答題(6小題,每小題10分,共計(jì)60分)1、根據(jù)下列條件,求二次函數(shù)的解析式.(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點(diǎn);(2)圖象的頂點(diǎn)(2,3),且經(jīng)過點(diǎn)(3,1);2、(1)證明推斷:如圖(1),在正方形中,點(diǎn),分別在邊,上,于點(diǎn),點(diǎn),分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,得到四邊形,交于點(diǎn),連接交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長(zhǎng).3、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個(gè)“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當(dāng)直線l與這個(gè)新圖象有且只有一個(gè)公共點(diǎn)時(shí),d=;(2)當(dāng)直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn)時(shí),求d的值;(3)當(dāng)直線l與這個(gè)新圖象有且只有兩個(gè)公共點(diǎn)時(shí),求d的取值范圍;(4)當(dāng)直線l與這個(gè)新圖象有四個(gè)公共點(diǎn)時(shí),直接寫出d的取值范圍.4、如圖,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,點(diǎn)O在射線AC上(點(diǎn)O不與點(diǎn)A重合),垂足為D,以點(diǎn)O為圓心,分別交射線AC于E、F兩點(diǎn),設(shè)OD=x.(1)如圖1,當(dāng)點(diǎn)O為AC邊的中點(diǎn)時(shí),求x的值;(2)如圖2,當(dāng)點(diǎn)O與點(diǎn)C重合時(shí),連接DF;求弦DF的長(zhǎng);(3)當(dāng)半圓O與BC無交點(diǎn)時(shí),直接寫出x的取值范圍.5、冰墩墩是2022年北京冬季奧運(yùn)會(huì)的吉祥物.冰墩墩以熊貓為原型設(shè)計(jì),寓意創(chuàng)造非凡、探索未來.某超市用2400元購(gòu)進(jìn)一批冰墩墩玩偶出售.若進(jìn)價(jià)降低20%,則可以多買50個(gè).市場(chǎng)調(diào)查發(fā)現(xiàn):當(dāng)每個(gè)冰墩墩玩偶的售價(jià)是20元時(shí),每周可以銷售200個(gè);每漲價(jià)1元,每周少銷售10個(gè).(1)求每個(gè)冰墩墩玩偶的進(jìn)價(jià);(2)設(shè)每個(gè)冰墩墩玩偶的售價(jià)是x元(x是大于20的正整數(shù)),每周總利潤(rùn)是w元.①求w關(guān)于x的函數(shù)解析式,并求每周總利潤(rùn)的最大值;②當(dāng)每周總利潤(rùn)不低于1870元時(shí),求每個(gè)冰墩墩玩偶售價(jià)x的范圍.6、(1)計(jì)算×cos45°﹣()﹣1+20180;(2)解方程組-參考答案-一、單選題1、C【解析】【分析】設(shè)它的最大邊長(zhǎng)為,根據(jù)相似圖形的性質(zhì)求解即可得到答案【詳解】解:設(shè)它的最大邊長(zhǎng)為,∵兩個(gè)四邊形相似,∴,解得,即該四邊形的最大邊長(zhǎng)為.故選C.【考點(diǎn)】本題考查了相似多邊形的性質(zhì),牢記“相似多邊形對(duì)應(yīng)邊的比相等”是解題的關(guān)鍵.2、A【解析】【分析】求出AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時(shí),DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②當(dāng)∠DEB=∠ACB=90°時(shí),證出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出結(jié)果.【詳解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時(shí),DE∥AC,所以△EBD∽△ABC,E為AB的中點(diǎn),AE=BE=AB=2cm,∴t=2s;②當(dāng)∠DEB=∠ACB=90°時(shí),∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D為BC的中點(diǎn),∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;綜上所述,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為2或3.5,故選A.【考點(diǎn)】本題考查了相似三角形的判定、平行線的性質(zhì)、含30°角的直角三角形的性質(zhì)等知識(shí);熟記相似三角形的判定方法是解決問題的關(guān)鍵,注意分類討論.3、A【解析】【分析】利用二次函數(shù)定義進(jìn)行解答即可.【詳解】解:由題意得:a﹣1≠0,解得:a≠1,故選:A.【考點(diǎn)】本題主要考查了二次函數(shù)的定義,準(zhǔn)確計(jì)算是解題的關(guān)鍵.4、D【解析】【分析】設(shè)等腰直角三角形的直角邊是1,則其斜邊是.根據(jù)直角三角形的內(nèi)切圓半徑是兩條直角邊的和與斜邊的差的一半,得其內(nèi)切圓半徑是;其外接圓半徑是斜邊的一半,得其外接圓半徑是.所以它們的比為=.【詳解】解:設(shè)等腰直角三角形的直角邊是1,則其斜邊是;∵內(nèi)切圓半徑是,外接圓半徑是,∴所以它們的比為=.故選:D.【考點(diǎn)】本題考查三角形的內(nèi)切圓與外接圓的知識(shí),解題的關(guān)鍵是熟記直角三角形外接圓的半徑和內(nèi)切圓的半徑公式:直角三角形的內(nèi)切圓半徑等于兩條直角邊的和與斜邊的差的一半;直角三角形外接圓的半徑是斜邊的一半.5、A【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,由“SAS”可證△AMN≌△AM′N,可得MN=NM′,可得MN=BM+DN,故①正確;由“SAS”可證△AEF≌△AED',可得EF=D'E,由勾股定理可得BE2+DF2=EF2;故②正確;通過證明△DAE∽△BFA,可得,可證BC2=DE?BF,故③正確;通過證明點(diǎn)A,點(diǎn)B,點(diǎn)M,點(diǎn)F四點(diǎn)共圓,∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,可證MO=EO,由∠BAM≠∠DAN,可得OE≠OF,故④錯(cuò)誤,即可求解.【詳解】解:將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到△ADM′,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABD',∴AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,∴∠ADM'+∠ADC=180°,∴點(diǎn)M'在直線CD上,∵∠MAN=45°,∴∠DAN+∠MAB=45°=∠DAN+∠DAM'=∠M'AN,∴∠M′AN=∠MAN=45°,又∵AN=AN,AM=AM',∴△AMN≌△AM′N(SAS),∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN;故①正確;∵將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABD',∴AF=AD',DF=D'B,∠ADF=∠ABD'=45°,∠DAF=∠BAD',∴∠D'BE=90°,∵∠MAN=45°,∴∠BAE+∠DAF=45°=∠BAD'+∠BAE=∠D'AE,∴∠D'AE=∠EAF=45°,又∵AE=AE,AF=AD',∴△AEF≌△AED'(SAS),∴EF=D'E,∵D'E2=BE2+D'B2,∴BE2+DF2=EF2;故②正確;∵∠BAF=∠BAE+∠EAF=∠BAE+45°,∠AEF=∠BAE+∠ABE=45°+∠BAE,∴∠BAF=∠AEF,又∵∠ABF=∠ADE=45°,∴△DAE∽△BFA,∴,又∵AB=AD=BC,∴BC2=DE?BF,故③正確;∵∠FBM=∠FAM=45°,∴點(diǎn)A,點(diǎn)B,點(diǎn)M,點(diǎn)F四點(diǎn)共圓,∴∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,同理可求∠AEN=90°,∠DAN=∠DEN,∴∠EOM=45°=∠EMO,∴EO=EM,∴MO=EO,∵∠BAM≠∠DAN,∴∠BFM≠∠DEN,∴EO≠FO,∴OM≠FO,故④錯(cuò)誤,故選:A.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識(shí),添加恰當(dāng)輔助線構(gòu)造全等三角形是解題的關(guān)鍵.6、A【解析】【分析】先求出拋物線的解析式,再列出不等式,求出其解集或,從而可得當(dāng)x=1時(shí),,有成立,最后求出a的取值范圍.【詳解】解:∵拋物線P:,將拋物線P繞原點(diǎn)旋轉(zhuǎn)180°得到拋物線,∴拋物線P與拋物線關(guān)于原點(diǎn)對(duì)稱,設(shè)點(diǎn)(x,y)在拋物線P’上,則點(diǎn)(-x,-y)一定在拋物線P上,∴∴拋物線的解析式為,∵當(dāng)時(shí),在拋物線上任取一點(diǎn)M,設(shè)點(diǎn)M的縱坐標(biāo)為t,若,即令,∴,解得:或,設(shè),∵開口向下,且與x軸的兩個(gè)交點(diǎn)為(0,0),(4a,0),即當(dāng)時(shí),要恒成立,此時(shí),∴當(dāng)x=1時(shí),即可,得:,解得:,又∵∴故選A【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).二、多選題1、ABC【解析】【分析】A.當(dāng)A′為CD中點(diǎn)時(shí),設(shè)A'E=AE=x,則DE=8﹣x,根據(jù)勾股定理列出方程求解,可推出A正確;B.當(dāng)△A'DE三邊之比為3:4:5時(shí),假設(shè)A'D=3a,DE=4a,A'E=5a,根據(jù)AD=AE+DE=8,可求得a的值,進(jìn)一步求得A'D=,即可判斷出B正確;C.過點(diǎn)E作EM⊥BC,垂足為M,連接A'A交EM,EF于點(diǎn)N,Q,證明△AA′D≌△EFM(ASA),即得C正確;D.過點(diǎn)A作AH⊥A'G,垂足為H,連接A'A,AG,先證△AA'D≌△AA'H,可得AD=AH,A'D=A'H,再證Rt△ABG≌Rt△AHG,可得HG=BG,由此證得△A'CG周長(zhǎng)=16,即可得出D錯(cuò)誤.【詳解】解:∵A′為CD中點(diǎn),正方形ABCD的邊長(zhǎng)為8,∴AD=8,A'D=CD=4,∠D=90o,∵正方形沿EF折疊,∴A'E=AE,∴設(shè)A'E=AE=x,則DE=8﹣x,∵在Rt△A'DE中,A'D2+DE2=A'E2,∴42+(8﹣x)2=x2,解得:x=5,∴AE=5,DE=3,∴tan∠DA'E=,故A正確;當(dāng)△A'DE三邊之比為3:4:5時(shí),假設(shè)A'D=3a,DE=4a,A'E=5a,則AE=A'E=5a,∵AD=AE+DE=8,∴5a+4a=8,解得:a=,∴A'D=3a=,A'C=CD﹣A'D=8﹣=,故B正確;如圖1,過點(diǎn)E作EM⊥BC,垂足為M,連接A'A交EM,EF于點(diǎn)N,Q,∴EM∥CD,EM=CD=AD,∴∠AEN=∠D=90°,由翻折可知:EF垂直平分AA′,∴∠AQE=90°,∴∠EAN+∠ANE=∠QEN+∠ANE=90°,∴∠EAN=∠QEN,在△AA'D和△EFM中,,∴△AA′D≌△EFM(ASA),∴AA'=EF,故C正確;如圖2,過點(diǎn)A作AH⊥A'G,垂足為H,連接A'A,AG,則∠AHA'=∠AHG=90°,∵折疊,∴∠EA'G=∠EAB=90°,A'E=AE,∵∠D=90o∴∠EAA'+∠DA'A=90o,∴∠AA'G=∠DA'A,∴△AA'D≌△AA'H(AAS),∴AD=AH,A'D=A'H,∵AD=AB,∴AH=AB,在Rt△ABG與Rt△AHG中,,∴Rt△ABG≌Rt△AHG(HL),∴HG=BG,∴△A'CG周長(zhǎng)=A'C+A'G+CG=A'C+A'H+HG+CG=A'C+A'D+BG+CG=CD+BC=8+8=16,∴當(dāng)A'在CD上移動(dòng)時(shí),△A'CG周長(zhǎng)不變,故D錯(cuò)誤.故選:ABC【考點(diǎn)】本題屬于幾何綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),勾股定理,全等三角形的判定及性質(zhì),熟練掌握相關(guān)圖形的性質(zhì)是解決本題的關(guān)鍵.2、ABD【解析】【分析】根據(jù)勾股定理求出AB的值,再根據(jù)銳角三角函數(shù)定義求出的三個(gè)函數(shù)值,進(jìn)行判斷即可得.【詳解】解:如圖所示,在中,AC=2,BC=3,根據(jù)勾股定理,,A、,選項(xiàng)說法錯(cuò)誤,符合題意;B、,選項(xiàng)說法錯(cuò)誤,符合題意;C、,選項(xiàng)說法正確,不符合題意;D、選項(xiàng)C說法正確,選項(xiàng)說法錯(cuò)誤,符合題意;故選ABD.【考點(diǎn)】本題考查了銳角三角形函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理和銳角三角函數(shù)的定義.3、ABD【解析】【分析】先根據(jù)同角的余角相等得出∠G=∠EFH,再根據(jù)三角函數(shù)的定義求解即可.【詳解】解:∵在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,∴∠E+∠G=90°,∠E+∠EFH=90°,∴∠EFH=∠G,∴sinG=sin∠EFH=.所以選項(xiàng)A、B、D都是正確的,故選:ABD.【考點(diǎn)】本題利用了同角的余角相等和銳角三角函數(shù)的定義解答,屬較簡(jiǎn)單題目.4、AC【解析】【分析】由a、b、c的關(guān)系可知,△ABC是直角三角形,然后根據(jù)銳角三角函數(shù)的定義求各角函數(shù)值.【詳解】解:由題意,∠A,∠B,∠C對(duì)邊分別為a,b,c,a=5,b=12,c=13,∴△ABC是直角三角形,∠C=90°.∴A、sinA=,該選項(xiàng)正確,符合題意;B、cosA=,該選項(xiàng)不正確,不符合題意;C、tanA=,該選項(xiàng)正確,符合題意;D、sinB=,該選項(xiàng)不正確,不符合題意;故選:AC.【考點(diǎn)】本題考查的是銳角三角函數(shù)的定義,銳角A的對(duì)邊a與斜邊c的比叫做∠A的正弦;銳角A的鄰邊b與斜邊c的比叫做∠A的余弦;銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切.5、ABCD【解析】【分析】由圓心角、弧、弦的關(guān)系定理得出ABCD正確,即可得出結(jié)論.【詳解】解:根據(jù)圓心角、弧、弦的關(guān)系定理得:在圓上依次截取等于半徑的弦,六條弧相等,就可以六等分圓,∴A正確;∵相互垂直的兩條直徑得出4個(gè)相等的圓心角是直角,∴4條弧相等,∴B正確;在圓上依次截取等于半徑的弦,六條弧相等,六個(gè)等分點(diǎn)中三個(gè)不相鄰的點(diǎn)三等分圓,∴C正確;∵相互垂直的兩條直徑得出4個(gè)相等的圓心角是直角,再平分四條弧,就可以八等分圓周,∴D正確;故選:ABCD.【考點(diǎn)】本題考查了正多邊形和圓、圓心角、弧、弦的關(guān)系定理;熟練掌握?qǐng)A心角、弧、弦的關(guān)系定理,由題意得出相等的弧是解題的關(guān)鍵.6、ABD【解析】【分析】由已知條件易證DE∥BC,則△ABC∽△ADE,再由相似三角形的性質(zhì)即可得到問題的選項(xiàng).【詳解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正確;∴△ABC∽△ADE,故A正確;∴DE:BC=AD:AB=1:3,故C錯(cuò)誤;∴S△ABC=9S△ADE故D正確,∴其中成立的jABD,故選ABD.【考點(diǎn)】本題考查了平行四邊形的性質(zhì)以及相似三角形的判定和性質(zhì),證明DE∥BC是解題的關(guān)鍵.7、ABC【解析】【分析】本題中可利用平行四邊形ABCD中兩對(duì)邊平行的特殊條件來進(jìn)行求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠EDG=∠EAB,∵∠E=∠E,∴△ABE∽△DGE,故選項(xiàng)A正確;∵AE∥BC,∴∠EDC=∠BCG,∠E=∠CBG,∴△CGB∽△DGE,故選項(xiàng)B正確;∵AE∥BC,∴∠E=∠FBC,∠EAF=∠BCF,∴△BCF∽△EAF,故選項(xiàng)C正確;無法證得△ACD∽△GCF,故選:ABC.【考點(diǎn)】本題考查了相似三角形的判定定理,平行四邊形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.三、填空題1、8【解析】【分析】二次函數(shù)的頂點(diǎn)式在x=h時(shí)有最值,a>0時(shí)有最小值,a<0時(shí)有最大值,題中函數(shù),故其在時(shí)有最大值.【詳解】解:∵,∴有最大值,當(dāng)時(shí),有最大值8.故答案為8.【考點(diǎn)】本題考查了二次函數(shù)頂點(diǎn)式求最值,熟練掌握二次函數(shù)的表達(dá)式及最值的確定方法是解題的關(guān)鍵.2、12【解析】【分析】設(shè)這根旗桿的高度為xm,利用某一時(shí)刻物體的高度與它的影長(zhǎng)的比相等得到,然后利用比例性質(zhì)求x即可.【詳解】設(shè)這根旗桿的高度為xm,根據(jù)題意得解得x=12(m),即這根旗桿的高度為12m.故答案為12.【考點(diǎn)】本題考查了相似三角形的應(yīng)用:利用影長(zhǎng)測(cè)量物體的高度;利用相似測(cè)量河的寬度(測(cè)量距離);借助標(biāo)桿或直尺測(cè)量物體的高度.3、【解析】【分析】先過點(diǎn)A作AD⊥BC,垂足是點(diǎn)D,得出AD2+BD2=AB2=2,再根據(jù)∠B=45°,得出AD=BD=1,然后根據(jù)tanC=,得出=,CD=2,最后根據(jù)勾股定理即可求出AC.【詳解】過點(diǎn)A作AD⊥BC,垂足是點(diǎn)D,∵AB=,∴AD2+BD2=AB2=2,∵∠B=45°,∴∠BAD=∠B=45°,∴AD=BD,∴AD2=BD2=1,∴AD=BD=1,∵tanC=,∴=,∴CD=2,∴AC===.故答案為.【考點(diǎn)】此題考查了解直角三角形,用到的知識(shí)點(diǎn)是勾股定理、解直角三角形等,關(guān)鍵是作出輔助線,構(gòu)造直角三角形.4、【解析】【分析】連接OD、OE、AD,AD交OE于F,如圖,根據(jù)切線的性質(zhì)得到∠BAC=90°,利用余弦的定義可計(jì)算出∠B=60°,則根據(jù)圓周角定理得到∠ADB=90°,∠AOD=120°,于是可計(jì)算出BD=1,AD=,接著證明△ADE為等邊三角形,求出OF=,根據(jù)扇形的面積公式,利用S陰影部分=S四邊形OAED﹣S扇形AOD=S△ADE+S△AOD﹣S扇形AOD進(jìn)行計(jì)算.【詳解】解:連接OD、OE、AD,AD交OE于F,如圖,∵AC是⊙O的切線,切點(diǎn)為A,∴AB⊥AC,∴∠BAC=90°,在Rt△ABC中,cosB===,∴∠B=60°,∴∠AOD=2∠B=120°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-∠B=90°-60°=30°,在Rt△ADB中,BD=AB=1,∴AD=BDtan60°=BD=,∵直線DE、EA都是⊙O的切線,∴EA=ED,∠DAE=90°-∠BAD=90°-30°=60°,∴△ADE為等邊三角形,而OA=OD,∴OE垂直平分AD,∴∠AFO=90°,在Rt△AOF中,∠OAF=30°,∴OF=OA=,∴S陰影部分=S四邊形OAED﹣S扇形AOD,=S△ADE+S△AOD﹣S扇形AOD,=×()2+××﹣,=.故答案為.【考點(diǎn)】本題考查圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì),掌握和運(yùn)用圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì)是解題關(guān)鍵.5、104【解析】【分析】根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)列式計(jì)算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案為:104.【考點(diǎn)】本題考查的是圓內(nèi)接四邊形的性質(zhì),掌握?qǐng)A內(nèi)接四邊形的對(duì)角互補(bǔ)是解題的關(guān)鍵.6、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長(zhǎng),即為EC的長(zhǎng).【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點(diǎn)】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.7、路程s一定,速度v與時(shí)間t之間的關(guān)系(答案不唯一).【解析】【分析】利用反比例函數(shù)的定義并結(jié)合生活中的實(shí)例來解答此題即可【詳解】根據(jù)路程=速度時(shí)間,速度v則可以用反比例函數(shù)來表示.故答案可以為路程s一定,速度v與時(shí)間t之間的關(guān)系(答案不唯一).【考點(diǎn)】本題主要考查了反比例函數(shù)的定義形式如(k為常數(shù),)的函數(shù)稱為反比例函數(shù).其中x是自變量,y是函數(shù),自變量x的取值范圍是不等于0的一切實(shí)數(shù).四、解答題1、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先設(shè)出拋物線的解析式為y=ax2+bx+c,再將點(diǎn)(0,1),(1,?2),(2,3)代入解析式中,即可求得拋物線的解析式;(2)由于已知拋物線的頂點(diǎn)坐標(biāo),則可設(shè)頂點(diǎn)式y(tǒng)=a(x?2)2+3,然后把(3,1)代入求出a的值即可.【詳解】解:(1)設(shè)出拋物線的解析式為y=ax2+bx+c,將(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴拋物線解析式為:y=4x2﹣7x+1;(2)設(shè)拋物線解析式為y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以拋物線解析式為y=﹣2(x﹣2)2+3.【考點(diǎn)】本題考查了待定系數(shù)法求二次函數(shù)的解析式:一般地,當(dāng)已知拋物線上三點(diǎn)時(shí),常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當(dāng)已知拋物線的頂點(diǎn)或?qū)ΨQ軸時(shí),常設(shè)其解析式為頂點(diǎn)式來求解;當(dāng)已知拋物線與x軸有兩個(gè)交點(diǎn)時(shí),可選擇設(shè)其解析式為交點(diǎn)式來求解.2、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長(zhǎng)線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如圖(3)中,作PM⊥BC交BC的延長(zhǎng)線于M.由BE:BF=3:4,設(shè)BE=3k,BF=4k,則EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根據(jù)勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考點(diǎn)】本題考查了正方形、矩形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,正確尋找全等三角形或相似三角形解決問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題,是解題的關(guān)鍵.3、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點(diǎn)A(-3,0),點(diǎn)B(1,0),則根據(jù)方程有兩個(gè)相等的實(shí)根求出P的坐標(biāo),然后求解即可;(3)(4)根據(jù)(2)求出的P點(diǎn)坐標(biāo)進(jìn)行數(shù)形結(jié)合畫圖找出d的取值范圍即可.【詳解】解:(1)當(dāng)直線l經(jīng)過點(diǎn)A(-3,0)時(shí),d=;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點(diǎn)A(-3,0),點(diǎn)B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點(diǎn)P,則點(diǎn)P的橫坐標(biāo)恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的兩個(gè)相等實(shí)數(shù)根,解△=9+8(2d+6)=0得d=,∴點(diǎn)P的坐標(biāo)為().①當(dāng)直線l經(jīng)過點(diǎn)B(1,0)時(shí),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),解得d=;②當(dāng)直線l經(jīng)過點(diǎn)P()時(shí),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),解得d=;
∴綜合①、②得:d=或d=(3)①由平移直線l可得:直線l從經(jīng)過點(diǎn)A(-3,0)開始向下平移到直線l經(jīng)過點(diǎn)P()的過程中,直線l與這個(gè)新圖象有且只有兩個(gè)公共點(diǎn),可得<d<②直線l從經(jīng)過點(diǎn)P()繼續(xù)向下平移的過程中,直線l與這個(gè)新圖象有且只有兩個(gè)公共點(diǎn),可得d<;∴綜合①、②得:<d<或d<;(4)如圖:當(dāng)直線l經(jīng)過點(diǎn)B(1,0)時(shí),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),解得d=;當(dāng)直線l繼續(xù)向下平移的過程中經(jīng)過點(diǎn)P(),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),可得d=;∴要使直線l與這個(gè)新圖象有四個(gè)公共點(diǎn)則d的取值范圍是<d<.【考點(diǎn)】本題考查的是二次函數(shù)綜合運(yùn)用,關(guān)鍵是通過數(shù)形變換,確定變換后圖形與直線的位置關(guān)系.4、(1);(2);(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 修補(bǔ)街道施工方案(3篇)
- 打卡活動(dòng)折紙方案策劃(3篇)
- 公司糕點(diǎn)活動(dòng)策劃方案(3篇)
- 體操特色活動(dòng)方案策劃(3篇)
- 涼亭庭院施工方案(3篇)
- 2025年金融服務(wù)產(chǎn)品銷售與服務(wù)規(guī)范
- 中學(xué)學(xué)生社團(tuán)活動(dòng)經(jīng)費(fèi)保障制度
- 2025年中職應(yīng)急管理(應(yīng)急處置基礎(chǔ))試題及答案
- 2025年大學(xué)心理學(xué)(咨詢心理學(xué))試題及答案
- 2025年大學(xué)大四(物流工程與管理)物流園區(qū)規(guī)劃設(shè)計(jì)綜合試題及答案
- 社工專業(yè)知識(shí)培訓(xùn)活動(dòng)課件
- 四川省成都市樹德實(shí)驗(yàn)中學(xué)2026屆數(shù)學(xué)八上期末聯(lián)考試題含解析
- 收購(gòu)發(fā)票培訓(xùn)課件
- 鞋廠與總代商的合作方案
- 2025年貿(mào)易經(jīng)濟(jì)專業(yè)題庫(kù)- 貿(mào)易教育的現(xiàn)狀和發(fā)展趨勢(shì)
- 核子儀考試題及答案
- DB46-T 481-2019 海南省公共機(jī)構(gòu)能耗定額標(biāo)準(zhǔn)
- 勞動(dòng)合同【2026版-新規(guī)】
- 電子元器件入廠質(zhì)量檢驗(yàn)規(guī)范標(biāo)準(zhǔn)
- 中藥炮制的目的及對(duì)藥物的影響
- 688高考高頻詞拓展+默寫檢測(cè)- 高三英語(yǔ)
評(píng)論
0/150
提交評(píng)論