難點解析魯教版(五四制)8年級數(shù)學(xué)下冊測試卷附完整答案詳解(考點梳理)_第1頁
難點解析魯教版(五四制)8年級數(shù)學(xué)下冊測試卷附完整答案詳解(考點梳理)_第2頁
難點解析魯教版(五四制)8年級數(shù)學(xué)下冊測試卷附完整答案詳解(考點梳理)_第3頁
難點解析魯教版(五四制)8年級數(shù)學(xué)下冊測試卷附完整答案詳解(考點梳理)_第4頁
難點解析魯教版(五四制)8年級數(shù)學(xué)下冊測試卷附完整答案詳解(考點梳理)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

魯教版(五四制)8年級數(shù)學(xué)下冊測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,將矩形紙片ABCD沿EF折疊,使點A恰好與點C重合,點B的對應(yīng)點為點B′,若DC=4,AF=5,則BC的長為()A. B. C.10 D.82、下列計算正確的是()A.2a+3a=5a2 B.(a2)3=a5C.(a﹣2)(a+3)=a2+a﹣6 D.=3、根據(jù)下列表格的對應(yīng)值,由此可判斷方程+12x﹣15=0必有一個解x滿足()x﹣111.11.2x2+12x﹣15﹣26﹣2﹣0.590.84A.﹣1<x<1 B.1<x<1.1 C.1.1<x<1.2 D.﹣0.59<x<0.844、下列各式是最簡二次根式的是()A. B. C. D.5、估計的值應(yīng)該在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間6、為解決群眾看病貴的問題,有關(guān)部門決定降低藥價,對某種原價為289元的藥品進行連續(xù)兩次降價后為256元,設(shè)平均每次降價的百分率為x,則下面所列方程正確的是()A.289(1﹣x)2=256 B.256(1﹣x)2=289C.289(1﹣2x)=256 D.256(1﹣2x)=2897、兩個相似多邊形的相似比是3:4,其中小多邊形的面積為18cm2,則較大多邊形的面積為()A.16cm2 B.54cm2 C.32cm2 D.48cm28、如果2是關(guān)于x的一元二次方程x2﹣k=0的一個根,則k的值是()A.2 B.4 C.﹣2 D.±2第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、定義:如圖1,已知銳角∠AOB內(nèi)有定點P,過點P任意作一條直線MN,分別交射線OA,OB于點M,N.若P是線段MN的中點時,則稱直線MN是∠AOB的中點直線.如圖2,射線OQ的表達式為y=2x(x>0),射線OQ與x軸正半軸的夾角為∠α,P(3,1),若MN為∠α的中點直線,則直線MN的表達式為__________________.2、一個正方形的對角線長為2,則其面積為_____.3、如圖,正方形ABCD中,△ABC繞點A逆時針旋轉(zhuǎn)到△AB′C′,AB′、AC′分別交對角線BD于點E、F,若AE=4,則EF?ED的值為_____.4、如圖,正方形ABCD的邊長為2,AC,BD交于點O,點E為△OAB內(nèi)的一點,連接AE,BE,CE,OE,若∠BEC=90°,給出下列四個結(jié)論:①∠OEC=45°;②線段AE的最小值是﹣1;③△OBE∽△ECO;④OE+BE=CE.其中正確的結(jié)論有_____.(填寫所有正確結(jié)論的序號)5、已知,則______.6、如圖,在Rt△ABC中,,點、分別在邊、上,,點為的中點,與交于點,如果,那么的長等于_____.7、在平面直角坐標系xOy中,一次函數(shù)y=mx+2m﹣1的圖象為直線l,在下列結(jié)論中:①當(dāng)m>0時,直線l一定經(jīng)過第一、第二、第三象限;②直線l一定經(jīng)過第三象限;③過點O作OH⊥l,垂足為H,則OH的最大值是;④若l與x軸交于點A,與y軸交于點B,△AOB為等腰三角形,則m=﹣1或,其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號).三、解答題(7小題,每小題10分,共計70分)1、某汽車租賃公司共有汽車50輛,市場調(diào)查表明,當(dāng)租金為每輛每日200元時可全部租出,當(dāng)租金每提高10元,租出去的汽車就減少2輛.(1)若租金提高了40元,公司每日租出去的汽車有_______輛;若租金提高了x元,公司每日租出去的汽車有_______輛;(2)當(dāng)租金提高多少元時,公司的每日收益可達到10120元?2、某服裝店銷售的襯衫原來每件的售價為80元,經(jīng)過兩次降價后每件的售價為64.8元,并且每次降價的百分率相同.(1)求該襯衫每次降價的百分率;(2)若該襯衫每件的進價為60元,該服裝店計劃通過以上兩次降價的方式,將庫存的該襯衫40件全部售出,并且確保兩次降價銷售的總利潤不少于282元,那么第一次降價時至少售出多少件后,方可進行第二次降價?3、如圖,中,,點D在AB上,,,于點E,把繞點D旋轉(zhuǎn)得,且點G,F(xiàn)在AC上.(1)求證:四邊形是正方形;(2)求四邊形的面積,4、如圖:正方形ABCD中,點E、F分別在邊BC、CD上,BE=CF,連接AE,BF交于點O,點M為AB中點,連接OM,求證:.5、四邊形ABCD是正方形,E、F分別是DC和B的延長線上點,且DE=BF,連接AE、AF、EF.(1)求證:△ADE≌ABF;(2)若BC=4,DE=1,求△ABF的面積.6、已知:如圖,在△ABC中,BD是∠ABC的平分線,過點D作DE∥CB,交AB于點E,,DE=6.(1)求AB的長;(2)求.7、感知:(1)數(shù)學(xué)課上,老師給出了一個模型:如圖1,,由,,可得;又因為,可得,進而得到______.我們把這個模型稱為“一線三等角”模型.應(yīng)用:(2)實戰(zhàn)組受此模型的啟發(fā),將三等角變?yōu)榉侵苯牵鐖D2,在中,,,點P是BC邊上的一個動點(不與B、C重合),點D是AC邊上的一個動點,且.①求證:;②當(dāng)點P為BC中點時,求CD的長;拓展:(3)在(2)的條件下如圖2,當(dāng)為等腰三角形時,請直接寫出BP的長.-參考答案-一、單選題1、D【解析】【分析】由折疊得:FA=FC=5,∠CFE=∠AFE,再由矩形的性質(zhì),得出△DCF是直角三角形,利用勾股定理可計算出DF點長,后可得出結(jié)論.【詳解】解:由折疊得:FA=FC=5,∵四邊形ABCD是矩形,CD=4,∴△CDF是直角三角形,∴DF==3,∴BC=AD=AF+DF=8;故選:D.【點睛】本題考查了矩形的性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理,熟練掌握性質(zhì),準確使用勾股定理是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)合并同類項,冪的乘方,多項式乘多項式,二次根式的加減法計算即可.【詳解】解:A選項,原式=5a,不符合題意;B選項,原式=a6,不符合題意;C選項,原式=a2+a﹣6,符合題意;D選項,和不是同類二次根式,不能合并,不符合題意;故選:C.【點睛】本題考查了合并同類項,冪的乘方,多項式乘多項式,二次根式的加減法,能正確掌握整式的運算法則是解答此題的關(guān)鍵.3、C【解析】【分析】利用表中數(shù)據(jù)得到x=1.1時,x2+12x﹣15=-0.59<0,x=1.2時,x2+12x﹣15=0.84>0,則可以判斷方程x2+12x﹣15=0時,有一個解x滿足1.1<x<1.2.【詳解】∵x=1.1時,x2+12x﹣15=-0.59<0,x=1.2時,x2+12x﹣15=0.84>0,∴1.1<x<1.2時,x2+12x﹣15=0即方程x2+12x﹣15=0必有一個解x滿足1.1<x<1.2,故選C.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.4、D【解析】【分析】根據(jù)最簡二次根式的定義即被開方數(shù)不含分母,也不含能開的盡方的因數(shù)或因式,判斷即可.【詳解】解:A.,故A不符合題意;B.,故B不符合題意;C.,故C不符合題意;D.是最簡二次根式,故D符合題意;故選:D.【點睛】本題考查了最簡二次根式,熟練掌握最簡二次根式的定義是解題的關(guān)鍵.5、B【解析】【分析】直接利用二次根式的運算法則化簡,進而估算無理數(shù)的大小即可.【詳解】解:===∵∴故選:B【點睛】此題主要考查了估算無理數(shù)的大小,正確進行二次根式的計算是解題關(guān)鍵.6、A【解析】【分析】設(shè)平均每次的降價率為x,則經(jīng)過兩次降價后的價格是289(1﹣x)2,由題意可列方程289(1﹣x)2=256.【詳解】解:設(shè)平均每次降價的百分率為x,則第一次降價售價為289(1﹣x),則第二次售價為289(1﹣x)2由題意得:289(1﹣x)2=256故選A.【點睛】本題考查了一元二次方程的應(yīng)用.解題的關(guān)鍵在于根據(jù)題意列正確的方程.7、C【解析】【分析】設(shè)較大多邊形的面積為S,由相似比與面積相似比的關(guān)系得,計算求解即可.【詳解】解:設(shè)較大多邊形的面積為S由兩個相似多邊形的相似比是3:4,可知兩個相似多邊形面積的相似比是9:16∴解得故選C.【點睛】本題考查了相似三角形的性質(zhì).解題的關(guān)鍵在于明確相似多邊形的面積比與相似比的關(guān)系.8、B【解析】【分析】把代入得,然后解關(guān)于的方程即可.【詳解】解:把代入得,解得.故選:B.【點睛】本題考查了一元二次方程的解,解題的關(guān)鍵是掌握能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.二、填空題1、y=﹣x+【解析】【分析】作MD⊥x軸于D,PE⊥x軸于E,則,設(shè)M(m,2m),由題意得PE=m,由P(3,1)求得m=1,即可求得N(5,0),然后根據(jù)待定系數(shù)法即可求得直線MN的解析式.【詳解】解:如圖,作MD⊥x軸于D,PE⊥x軸于E,則,∵P為MN的中點,∴∴DN=EN,即E為DN中點,∴PE是中位線∴PE=MD,∵M是射線OQ上的點,∴設(shè)M(m,2m),∴MD=2m,∴PE=MD=m,∵P(3,1),∴m=1,OE=3∴M(1,2)∴OD=1,則DE=OE-OD=2∴EN=DE=2∴ON=OE+EN=5∴N(5,0),設(shè)直線MN的解析式為y=kx+b,把P(3,1),N(5,0)代入得,解得,∴直線MN的解析式為y=﹣x+,故答案為:y=﹣x+.【點睛】本題考查了待定系數(shù)法求一次函數(shù)的解析式,正比例函數(shù)圖象上點的坐標特征,三角形中位線定理,求得N的坐標是解題的關(guān)鍵.2、2【解析】【分析】方法一:根據(jù)正方形邊長求出面積;方法二根據(jù)正方形是特殊的菱形,所以正方形面積等于對角線乘積的一半.【詳解】解:方法一:四邊形是正方形,,,由勾股定理得,,.方法二:因為正方形的對角線長為2,所以面積為:.故答案為:2.【點睛】本題考查了正方形的性質(zhì),解題的關(guān)鍵是掌握正方形的性質(zhì).3、16【解析】【分析】根據(jù)正方形的性質(zhì)得到∠BAC=∠ADB=45°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠EAF=∠BAC=45°,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵四邊形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC繞點A逆時針旋轉(zhuǎn)到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴EF?ED=AE2,∵AE=4,∴EF?ED的值為16,故答案為:16.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),相似三角形的判定和性質(zhì),找出相關(guān)的相似三角形是解題的關(guān)鍵.4、①②④【解析】【分析】通過證明點E,點B,點C,點O四點共圓,可得∠OEC=∠OBC=45°,故①正確;由題意可得點E在直徑為BC的圓上,當(dāng)點E在AF上時,AE有最小值,由勾股定理可得AE的最小值為,故②正確;由圓周角定理可得∠BOE≠∠OEC,則∠COE≠∠BEO,即△OBE與△ECO不相似,故③錯誤;由“SAS”可證△COH≌△BOE,可得BE=CH,由線段的和差關(guān)系EC=BE+OE,故④正確,即可求解.【詳解】解:∵四邊形ABCD是正方形,∴∠BOC=90°,∠ACB=∠DBC=45°,∵∠BEC=90°,∴∠CEB=∠BOC,∴點E,點B,點C,點O四點共圓,∴∠OEC=∠OBC=45°,故①正確;∵∠BEC=90°,∴點E在直徑為BC的圓上,如圖,取BC的中點F,連接AF,EF,∴EF=BF=FC=1,在△AFE中,AE>AFEF,∴當(dāng)點E在AF上時,AE有最小值,此時:AF=,∴AE的最小值為,故②正確;∵點E,點B,點C,點O四點共圓,∴∠BOE=∠BCE<∠BCO=45°,∠OEC=∠CBO=45°,∴∠BOE≠∠OEC,∴∠COE≠∠BEO,∴△OBE與△ECO不相似,故③錯誤;如圖,過點O作OH⊥OE,交CE于H,∵OH⊥OE,∠OEC=45°,∴∠OEC=∠OHE=45°,∴OE=OH,∴EH=OE,∵∠EOH=∠BOC=90°,∴∠BOE=∠COH,又∵OB=OC,∴△COH≌△BOE(SAS),∴BE=CH,∴EC=BE+EH=BE+OE,故④正確,故答案為:①②④.【點睛】本題是四邊形綜合題,考查了正方形的性質(zhì),相似三角形的判定,勾股定理,全等三角形的判定和性質(zhì)等知識,靈活運用這些性質(zhì)解決問題是解題的關(guān)鍵.5、【解析】【分析】利用比例的基本性質(zhì),進行計算即可.【詳解】解:,,,,故答案為:.【點睛】本題考查了比例的性質(zhì),解題的關(guān)鍵是熟練掌握比例的基本性質(zhì).6、2【解析】【分析】連接,根據(jù)已知條件得到是的中位線,根據(jù)三角形中位線的性質(zhì)得到,,由相似三角形的性質(zhì)即可得到結(jié)論.【詳解】解:,為的中點,,連接,,是的中位線,,,,EFCF=,,,故答案為:2.【點睛】本題考查了直角三角形斜邊上的中線,相似三角形的判定和性質(zhì),三角形中位線的性質(zhì)定理,正確的識別圖形是解題的關(guān)鍵.7、②③##③②【解析】【分析】分別討論函數(shù)的和的正負,得出函數(shù)過第幾象限,可得出結(jié)論①錯誤,結(jié)論②正確;由解析式可得一次函數(shù)過定點,可得出當(dāng)點和定點重合時,最大,故③正確;分別求出點和點的坐標,根據(jù)是等腰三角形可得出等式,并求出參數(shù)的值,得出結(jié)論④錯誤.【詳解】解:當(dāng),,即時,直線經(jīng)過第一,第二,第三象限;當(dāng),即時,直線經(jīng)過第一,第三象限;當(dāng),,即時,直線經(jīng)過第一,第三,第四象限;當(dāng)時,,直線經(jīng)過第二,第三,第四象限;故①錯誤,②正確;一次函數(shù),當(dāng)時,,即直線經(jīng)過定點,當(dāng)點和定點重合時,取得最大值;即③正確;若與軸交于點,與軸交于點,則,,,若為等腰三角形,則,,解得或,又當(dāng)時,點和點,點重合,故不成立,當(dāng)為等腰三角形,;故④錯誤.故答案為:②③.【點睛】本題主要考查一次函數(shù)圖象過象限問題,等腰三角形存在性等問題,解題的關(guān)鍵是在計算時注意特殊情況即函數(shù)過原點時的情況需要排除.三、解答題1、(1)42;(50-x)(2)當(dāng)租金提高20元或30元時,公司的每日收益可達到10120元【解析】【分析】(1)根據(jù)題意列式計算即可;(2)根據(jù)題意列出一元二次方程求解即可(1)根據(jù)題意知,每日可租出:50-=42(輛),故答案是:42;(50-x);(2)依題意,得:(200+x)(50-)=10120,整理,得:x2-50x+600=0,解得:x1=20,x2=30.答:當(dāng)租金提高20元或30元時,公司的每日收益可達到10120元.【點睛】本題考查了一元二次方程的應(yīng)用,根據(jù)題意列出一元二次方程是解題的關(guān)鍵.2、(1)該商品每次降價的百分率為10%;(2)第一次降價至少售出13件后,方可進行第二次降價.【解析】【分析】(1)設(shè)該商品每次降價的百分率為x,利用經(jīng)過兩次降價后的價格=原價×(1-每次降價的百分率)2,即可得出關(guān)于x的一元二次方程,解之取其符合題意的值可得出該商品每次降價的百分率為10%;(2)設(shè)第一次降價后售出m件,則第二次降價后售出(40-m)件,利用總利潤=銷售收入-進貨總價,結(jié)合兩次降價銷售的總利潤不少于282元,即可得出關(guān)于m的一元一次不等式,解之取其中的最小值即可得出結(jié)論.(1)解:設(shè)該商品每次降價的百分率為x,依題意得:80(1-x)2=64.8,解得:x1=0.1=10%,x2=1.9(不合題意,舍去).答:該商品每次降價的百分率為10%;(2)解:設(shè)第一次降價后售出m件,則第二次降價后售出(40-m)件,依題意得:,解得:,∵m為整數(shù),∴m的最小值是13,答:第一次降價至少售出13件后,方可進行第二次降價.【點睛】本題考查了一元二次方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出一元二次方程;(2)根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式.3、(1)見解析(2)【解析】【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得≌,進而可得,根據(jù)三個角是直角的四邊形證明四邊形CEDF是矩形,根據(jù)鄰邊相等的矩形是正方形即可得證;(2)在中,根據(jù)勾股定理得根據(jù)等面積法即可求得,進而求得正方形的面積.(1)∵,∴.由旋轉(zhuǎn)得:,≌.∴.∵,∴四邊形CEDF是矩形.∵,∴四邊形CEDF是正方形.(2)由(1)得:四邊形CEDF是正方形,∴.由旋轉(zhuǎn)得:≌,.∴,.在中,根據(jù)勾股定理得:.∵,∴.∴.∴.【點睛】本題考查了正方形的性質(zhì)與判定,勾股定理,旋轉(zhuǎn)的性質(zhì),全等的性質(zhì),掌握以上性質(zhì)定理是解題的關(guān)鍵.4、見解析【解析】【分析】證明△ABE≌△BCF,再推導(dǎo)出∠AOB=90°,在Rt△ABO中,M點是斜邊AB中點,根據(jù)直角三角形斜邊中線的性質(zhì)可得結(jié)論.【詳解】證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,又BE=CF,∴△ABE≌△BCF(SAS).∴∠BAE=∠CBF.∵∠ABO+∠CBF=90°,∴∠ABO+∠BAO=90°,即∠AOB=90°.在Rt△ABO中,M點是斜邊AB中點,∴.【點睛】本題主要考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、直角三角形斜邊的中線性質(zhì),解決線段間的倍分關(guān)系,要先觀察線段所在圖形的特征,借助全等三角形或特殊三角形的性質(zhì)求解.5、(1)證明見解答;(2)2.【解析】【分析】(1)根據(jù)全等三角形的判定定理即可得出答案;(2)根據(jù)正方形的性質(zhì)求出AB的長度,根據(jù)全等三角形的性質(zhì)求出BF的長度,即可確定三角形ABF的面積.(1)解:∵四邊形ABCD是正方形,∴AD=AB,∠D=∠ABF=90°,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)∵DE=1,BC=4,∴BF=1,AB=4,∴S△ABF=×1×4=2,【點睛】本題考查了正方形的性質(zhì)和全等三角形的判定,解題的關(guān)鍵是要牢記正方形的性質(zhì)和全等三角形的判定定理.6、(1)8(2)【解析】【分析】(1)由∠ABD=∠CBD,DE∥BC可推得∠EDB=∠CBD,進而推出∠ABD=∠EDB,由此可得BE=DE=6,由DE∥BC可得,進而證得AE=2,于是可得結(jié)論;(2)△ADE看成以DE為底,高為h1,△BCD看成以BC為底,高為h2,由平行線分線段成比例定理和相似三角形的性質(zhì)可得,,進而證得結(jié)論.(1)解:BD平∠ABC,∴∠ABD=∠C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論