蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)題目及解析_第1頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)題目及解析_第2頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)題目及解析_第3頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)題目及解析_第4頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)題目及解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)題目及解析一、解答題1.如圖,直線,、是、上的兩點(diǎn),直線與、分別交于點(diǎn)、,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),連接、.(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),,,則_____.(2)若點(diǎn)與點(diǎn)、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.2.在△ABC中,∠BAC=90°,點(diǎn)D是BC上一點(diǎn),將△ABD沿AD翻折后得到△AED,邊AE交BC于點(diǎn)F.(1)如圖①,當(dāng)AE⊥BC時(shí),寫出圖中所有與∠B相等的角:;所有與∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度數(shù);②是否存在這樣的x的值,使得△DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請(qǐng)說明理由.3.在中,射線平分交于點(diǎn),點(diǎn)在邊上運(yùn)動(dòng)(不與點(diǎn)重合),過點(diǎn)作交于點(diǎn).(1)如圖1,點(diǎn)在線段上運(yùn)動(dòng)時(shí),平分.①若,,則_____;若,則_____;②試探究與之間的數(shù)量關(guān)系?請(qǐng)說明理由;(2)點(diǎn)在線段上運(yùn)動(dòng)時(shí),的角平分線所在直線與射線交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說明理由.4.如圖,△ABC和△ADE有公共頂點(diǎn)A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過AC上一點(diǎn)O作OG⊥AC,分別交AB、AD、AE于點(diǎn)G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長(zhǎng);②如圖2,∠AFO的平分線和∠AOF的平分線交于點(diǎn)M,∠FHD的平分線和∠OGB的平分線交于點(diǎn)N,∠N+∠M的度數(shù)是否發(fā)生變化?若不變,求出其度數(shù);若改變,請(qǐng)說明理由.5.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點(diǎn)落在內(nèi)的點(diǎn)處.(1)若,________.(2)如圖①,若各個(gè)角度不確定,試猜想,,之間的數(shù)量關(guān)系,直接寫出結(jié)論.②當(dāng)點(diǎn)落在四邊形外部時(shí)(如圖②),(1)中的猜想是否仍然成立?若成立,請(qǐng)說明理由,若不成立,,,之間又存在什么關(guān)系?請(qǐng)說明.(3)應(yīng)用:如圖③:把一個(gè)三角形的三個(gè)角向內(nèi)折疊之后,且三個(gè)頂點(diǎn)不重合,那么圖中的和是________.6.在△ABC中,∠ABC=∠ACB,點(diǎn)D在直線BC上(不與B、C重合),點(diǎn)E在直線AC上(不與A、C重合),且∠ADE=∠AED.(1)如圖1,若∠ABC=50°,∠AED=80°,則∠CDE=°,此時(shí),=.(2)若點(diǎn)D在BC邊上(點(diǎn)B、C除外)運(yùn)動(dòng)(如圖1),試探究∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由;(3)若點(diǎn)D在線段BC的延長(zhǎng)線上,點(diǎn)E在線段AC的延長(zhǎng)線上(如圖2),其余條件不變,請(qǐng)直接寫出∠BAD與∠CDE的數(shù)量關(guān)系:.(4)若點(diǎn)D在線段CB的延長(zhǎng)線上(如圖3),點(diǎn)E在直線AC上,∠BAD=26°,其余條件不變,則∠CDE=(友情提醒:可利用圖3畫圖分析).7.已知△ABC的面積是60,請(qǐng)完成下列問題:(1)如圖1,若AD是△ABC的BC邊上的中線,則△ABD的面積△ACD的面積.(填“>”“<”或“=”)(2)如圖2,若CD、BE分別是△ABC的AB、AC邊上的中線,求四邊形ADOE的面積可以用如下方法:連接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=y(tǒng)由題意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程組為:,解得,通過解這個(gè)方程組可得四邊形ADOE的面積為.(3)如圖3,AD:DB=1:3,CE:AE=1:2,請(qǐng)你計(jì)算四邊形ADOE的面積,并說明理由.8.已知,點(diǎn)、分別是、上的點(diǎn),點(diǎn)在、之間,連接、.(1)如圖1,若,求的度數(shù).(2)在(1)的條件下,分別作和的平分線交于點(diǎn),求的度數(shù).(3)如圖2,若點(diǎn)是下方一點(diǎn),平分,平分,已知.則判斷以下兩個(gè)結(jié)論是否正確,并證明你認(rèn)為正確的結(jié)論.①為定值;②為定值.9.(1)證明:兩條平行線被第三條直線所截,一對(duì)同旁內(nèi)角的角平分線互相垂直.已知:如圖,AB∥CD,.求證:.證明:(2)如圖,AB∥CD,點(diǎn)E、F分別在直線AB、CD上,EM∥FN,∠AEM與∠CFN的角平分線相交于點(diǎn)O.求證:EO⊥FO.(3)如圖,AB∥CD,點(diǎn)E、F分別在直線AB、CD上,EM∥PN,MP∥NF,∠AEM與∠CFN的角平分線相交于點(diǎn)O,∠P=102°,求∠O的度數(shù).10.已知:射線(1)如圖1,的角平分線交射線與點(diǎn),若,求的度數(shù).(2)如圖2,若點(diǎn)在射線上,平分交于點(diǎn),平分交于點(diǎn),,求的度數(shù).(3)如圖3,若,依次作出的角平分線,的角平分線,的角平分線,的角平分線,其中點(diǎn),,,,,都在射線上,直接寫出的度數(shù).【參考答案】一、解答題1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計(jì)算∠PFD即可;(2)根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí);②當(dāng)點(diǎn)P在AB上方時(shí);③當(dāng)點(diǎn)P在CD下方時(shí),分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí),過點(diǎn)P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點(diǎn)P在AB上方時(shí),如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點(diǎn)P在CD下方時(shí),∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點(diǎn)睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問題.2.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質(zhì)和平行線的性質(zhì)即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內(nèi)角和定理可得,再由根據(jù)角的和差計(jì)算即可得∠C的度數(shù),進(jìn)而得∠B的度數(shù).②根據(jù)翻折的性質(zhì)和三角形外角及三角形內(nèi)角和定理,用含x的代數(shù)式表示出∠FDE、∠DFE的度數(shù),分三種情況討論求出符合題意的x值即可.【詳解】(1)由翻折的性質(zhì)可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故與∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故與∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°則,,由翻折可知:∵,,∴,,當(dāng)∠FDE=∠DFE時(shí),,解得:;當(dāng)∠FDE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);當(dāng)∠DFE=∠E時(shí),,解得:(因?yàn)?<x≤45,故舍去);綜上所述,存在這樣的x的值,使得△DEF中有兩個(gè)角相等.且.【點(diǎn)睛】本題考查圖形的翻折、三角形內(nèi)角和定理、平行線的判定及其性質(zhì)、三角形外角的性質(zhì)、等角代換,解題的關(guān)鍵是熟知圖形翻折的性質(zhì)及綜合運(yùn)用所學(xué)知識(shí).3.(1)①115°,110°;②,證明見解析;(2),證明見解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質(zhì)可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,證明見解析;(2),證明見解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質(zhì)可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的內(nèi)角和定理求得∠AFD的度數(shù)即可;已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的內(nèi)角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的內(nèi)角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性質(zhì)可得∠AFD=∠FDM+∠FMD=90°-∠B.【詳解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案為115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如圖,射線ED交AG于點(diǎn)M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【點(diǎn)睛】本題考查了角平分線的定義、平行線的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì),根據(jù)角平分線的定義、平行線的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì)確定各角之間的關(guān)系是解決問題的關(guān)鍵.4.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定義求出∠M,∠N(用∠FAO表示),可得結(jié)論.【詳解】解:(1)如圖,∵AB∥ED∴∠E=∠EAB=90°(兩直線平行,內(nèi)錯(cuò)角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案為:45°.(2)①如圖1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=?GH?AO=4,S△AHF=?FH?AO=1,∴GH=4,F(xiàn)H=1,∴OF=GH-HF-OG=4-1-2=1.②結(jié)論:∠N+∠M=142.5°,度數(shù)不變.理由:如圖2中,∵M(jìn)F,MO分別平分∠AFO,∠AOF,∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,∵NH,NG分別平分∠DHG,∠BGH,∴∠N=180°-(∠DHG+∠BGH)=180°-(∠HAG+∠AGH+∠HAG+∠AHG)=180°-(180°+∠HAG)=90°-∠HAG=90°-(30°+∠FAO+45°)=52.5°-∠FAO,∴∠M+∠N=142.5°.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì)等知識(shí),最后一個(gè)問題的解題關(guān)鍵是用∠FAO表示出∠M,∠N.5.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,由兩個(gè)平角∠AEB和∠ADC得:∠1+∠2等于360°與四個(gè)折疊角的差,化簡(jiǎn)得結(jié)果;②利用兩次外角定理得出結(jié)論;(3)由折疊可知∠1+∠2+∠3+∠4+∠5+∠6等于六邊形的內(nèi)角和減去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的內(nèi)角和定理即可求解.【詳解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE=180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;(2)①,理由如下由折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;②,理由如下:∵是的一個(gè)外角∴.∵是的一個(gè)外角∴又∵∴(3)如圖由題意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【點(diǎn)睛】題主要考查了折疊變換、三角形、四邊形內(nèi)角和定理.注意折疊前后圖形全等;三角形內(nèi)角和為180°;四邊形內(nèi)角和等于360度.6.(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內(nèi)角和定理以及三角形的外角的性質(zhì)解決問題即可;(2)結(jié)論:∠B解析:(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內(nèi)角和定理以及三角形的外角的性質(zhì)解決問題即可;(2)結(jié)論:∠BAD=2∠CDE.設(shè)∠B=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=yx,∠DAE=180°-2y,推出∠BAD=∠BAC-∠DAE=2y-2x=2(y-x),由此可得結(jié)論.(3)如圖②中,結(jié)論:∠BAD=2∠CDE.解決方法類似(2).(4)分兩種情形:①當(dāng)點(diǎn)E在CA的延長(zhǎng)線上,設(shè)∠ABC=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,由題意,∠BAD=180°-∠BAC-∠DAE=2x+2y-180°=22°,推出x+y=101°,可得結(jié)論.②如圖④中,當(dāng)點(diǎn)E在AC的延長(zhǎng)線上時(shí),同法可求.【詳解】解:(1)如圖①中,∵∠ABC=∠ACB=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠AED=∠CDE+∠C,∴∠CDE=80°﹣50°=30°,∵∠ADE=∠AED=80°,∴∠DAE=180°﹣80°﹣80°=20°,∴∠BAD=∠BAC﹣∠DAE=80°﹣20°=60°,∴=2.故答案為30,2;(2)結(jié)論:∠BAD=2∠CDE.理由:設(shè)∠B=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=y(tǒng)﹣x,∠DAE=180°﹣2y,∴∠BAD=∠BAC﹣∠DAE=2y﹣2x=2(y﹣x),∴∠BAD=2∠CDE;(3)如圖②中,結(jié)論:∠BAD=2∠CDE.理由:設(shè)∠B=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=∠BAC+∠DAE=360°﹣2(x+y),∴∠BAD=2∠CDE.故答案為:∠BAD=2∠CDE;(4)如圖③中,設(shè)∠ABC=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=180°﹣∠BAC﹣∠DAE=2x+2y﹣180°=26°,∴x+y=103°∴∠CDE=180°﹣103°=77°.如圖④中,當(dāng)點(diǎn)E在AC的延長(zhǎng)線上時(shí),設(shè)∠ABC=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠ADB=x﹣26°,∠CDE=y(tǒng)﹣(x﹣26°),∵∠ACB=∠CDE+∠AED,∴x=y(tǒng)+y﹣(x﹣26°),∴x﹣y=13°,∴∠CDE=x﹣y=13°故答案為:77°或13°.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),三角形內(nèi)角和定理,三角形的外角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)解決問題,屬于中考??碱}型.7.(1)=;(2),20;(3)S四邊形ADOE=13.理由見解析.【分析】(1)利用三角形的面積公式計(jì)算即可得出結(jié)論;(2)利用題干所給解答方法解答即可;(3)連接AO,利用(2)中的方法,解析:(1)=;(2),20;(3)S四邊形ADOE=13.理由見解析.【分析】(1)利用三角形的面積公式計(jì)算即可得出結(jié)論;(2)利用題干所給解答方法解答即可;(3)連接AO,利用(2)中的方法,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=2y,利用已知條件列出方程組,解方程組即可得出結(jié)論.【詳解】解:(1)如圖1,過A作AH⊥BC于H,∵AD是△ABC的BC邊上的中線,∴BD=CD,∴,,∴S△ABD=S△ACD,故答案為:=;(2)解方程組得,∴S△AOD=S△BOD=10,∴S四邊形ADOB=S△AOD+S△AOE=10+10=20,故答案為:,20;(3)如圖3,連接AO,∵AD:DB=1:3,∴S△ADO=S△BDO,∵CE:AE=1:2,∴S△CEO=S△AEO,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=3x,S△AEO=2y,由題意得:S△ABE=S△ABC=40,S△ADC=S△ABC=15,可列方程組為:,解得:,∴S四邊形ADOE=S△ADO+S△AEO=x+2y=13.【點(diǎn)睛】本題是一道四邊形的綜合題,主要考查了三角形的面積公式,等底同高的三角形面積相等,高相同的三角形的面積比等于底的比,二元一次方程組的解法.本題是閱讀型題目,準(zhǔn)確理解題干中的方法并正確應(yīng)用是解題的關(guān)鍵.8.(1)(2)(3)②是正確的,證明見解析【分析】(1)過點(diǎn)G作GE∥AB,然后利用平行線性質(zhì)即可得到結(jié)果;(2)分別過G和H作GE∥AB,F(xiàn)H∥AB,然后利用平行線的性質(zhì)得到對(duì)應(yīng)的邊角解析:(1)(2)(3)②是正確的,證明見解析【分析】(1)過點(diǎn)G作GE∥AB,然后利用平行線性質(zhì)即可得到結(jié)果;(2)分別過G和H作GE∥AB,F(xiàn)H∥AB,然后利用平行線的性質(zhì)得到對(duì)應(yīng)的邊角關(guān)系,進(jìn)而∠MHN的具體值;(3)根據(jù)角平分線性質(zhì),設(shè),然后利用平行線的基本性質(zhì),分別推導(dǎo)出和的值即可判斷.【詳解】(1)如圖所示,過點(diǎn)作,∵,,∴,∴,,∴,∵,∴,∴.(2)如圖所示,過點(diǎn)作,過點(diǎn)作,∵,∴,∴,,∴,∵,∴,∵平分,平分,∴,,∴,∵,∴,,∴.(3)如圖所示,∵,∴,∵平分,∴,∴,∴,∵平分,∴,設(shè),則,∴,∴,,∴②中的值為定值.故②是正確的.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),做題的關(guān)鍵是能夠找到輔助線,構(gòu)造輔助線.9.(1)直線MN分別交直線AB、CD于點(diǎn)E、F,∠AEF和∠CFE的角平分線OE、OF交于點(diǎn)O,OE⊥OF,見解析;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論