版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省康定市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、在自習(xí)課上,小芳同學(xué)將一張長方形紙片ABCD按如圖所示的方式折疊起來,她發(fā)現(xiàn)D、B兩點均落在了對角線AC的中點O處,且四邊形AECF是菱形.若AB=3cm,則陰影部分的面積為()A.1cm2 B.2cm2 C.cm2 D.cm22、已知點是平分線上的一點,且,作于點,點是射線上的一個動點,若,則的最小值為(
)A.2 B.3 C.4 D.53、如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當(dāng)∠DEB是直角時,DF的長為(
).A.5 B.3 C. D.4、在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于(
)A.10 B.8 C.6或10 D.8或105、如圖,在中,,兩直角邊,,現(xiàn)將AC沿AD折疊,使點C落在斜邊AB上的點E處,則CD長為(
)A. B. C. D.6、勾股定理是“人類最偉大的十個科學(xué)發(fā)現(xiàn)之一”.我國對勾股定理的證明是由漢代的趙爽在注解《周髀算經(jīng)》時給出的,他用來證明勾股定理的圖案被稱為“趙爽弦圖”.2002年在北京召開的國際數(shù)學(xué)大會選它作為會徽.下列圖案中是“趙爽弦圖”的是(
)A. B. C. D.7、如圖,有一塊直角三角形紙片,∠C=90°,AC=8,BC=6,將斜邊AB翻折,使點B落在直角邊AC的延長線上的點E處,折痕為AD,則BD的長為(
)A.2 B. C. D.4第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖所示,數(shù)軸上點A所表示的數(shù)為_______.2、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點C到AB的距離是_______.3、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點C與點A重合,折痕為DE,則△ABE的周長為.4、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時,梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動,將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.5、勾股定理最早出現(xiàn)在商高的《周髀算經(jīng)》:“勾廣三,股修四,經(jīng)隅五”.觀察下列勾股數(shù):3,4,5;5,12,13;7,24,25;…,這類勾股數(shù)的特點是:勾為奇數(shù),弦與股相差為1,柏拉圖研究了勾為偶數(shù),弦與股相差為2的一類勾股數(shù),如:6,8,10;8,15,17;…,若此類勾股數(shù)的勾為2m(m≥3,m為正整數(shù)),則其弦是________(結(jié)果用含m的式子表示).6、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時梯子的高度達(dá)不到工作要求,因此把梯子的B1端向墻的方向移動了1.6米到B處,此時梯子的高度達(dá)到工作要求,那么梯子的A1端向上移動了_____米.7、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長為_______8、我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個問題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長度單位,1丈10尺)其大意為:有一個水池,水面是一個邊長為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點,它的頂端B恰好到達(dá)池邊的水面D處,問水的深度是多少?則水深DE為_____尺.三、解答題(7小題,每小題10分,共計70分)1、臺風(fēng)是一種自然災(zāi)害,它以臺風(fēng)中心為圓心在周圍上千米的范圍內(nèi)形成極端氣候,有極強的破壞力,有一臺風(fēng)中心沿東西方向AB由點A行駛向點B,已知點C為一海港,且點C與直線AB上兩點A、B的距離分別為300km和400km,又AB=500km,以臺風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)海港C會受臺風(fēng)影響嗎?為什么?(2)若臺風(fēng)的速度為20km/h,臺風(fēng)影響該海港持續(xù)的時間有多長?2、如圖,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,點D為BC的中點,.(1)求證:△ABC≌△DEB.(2)連結(jié)AE,若BC=4,直接寫出AE的長.3、細(xì)心觀察圖形,認(rèn)真分析各式,然后解答問題.OA22=,;OA32=12+,;OA42=12+,…(1)請用含有n(n是正整數(shù))的等式表示上述變規(guī)律:OAn2=______;Sn=______.(2)求出OA10的長.(3)若一個三角形的面積是,計算說明他是第幾個三角形?(4)求出S12+S22+S32+…+S102的值.4、有一只喜鵲在一棵高3米的小樹的樹梢上覓食,它的巢筑在距離該樹24米,高為14米的一棵大樹上,且巢離大樹頂部為1米,這時,它聽到巢中幼鳥求助的叫聲,立刻趕過去,如果它的飛行速度為每秒5米,那么它至少幾秒能趕回巢中?5、如圖,,兩個工廠位于一段直線形河道的異側(cè),工廠至河道的距離為,工廠至河道的距離為,經(jīng)測量河道上、兩地間的距離為,現(xiàn)準(zhǔn)備在河邊某處(河寬不計)修一個污水處理廠.(1)設(shè),請用的代數(shù)式表示的長______;(結(jié)果保留根號)(2)為了使,兩廠到污水處理廠的排污管道之和最短,請在圖中畫出污水廠位置,并求出排污管道最短長度?(3)通過以上的解答,充分展開聯(lián)想,運用數(shù)形結(jié)合思想,請你求出的最小值為多少?6、如圖②,它可以看作是由邊長為a、b、c的兩個直角三角形(如圖①C為斜邊)拼成的,其中A、C、D三點在同一條直線上,(1)請從面積出發(fā)寫出一個表示a、b、c的關(guān)系的等式;(要求寫出過程)(2)如圖③④⑤,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,這三個圖形中面積關(guān)系滿足的有_______個.(3)如圖⑥,直角三角形的兩直角邊長分別為3,5,分別以直角三角形的三邊為直徑作半圓,則圖中陰影部分的面積為_______.7、如圖,將一個長方形紙片ABCD沿對角線AC折疊,點B落在點E處,AE交DC于點F,已知AB=4,BC=2,求折疊后重合部分的面積.-參考答案-一、單選題1、D【解析】【分析】由菱形的性質(zhì)得到∠FCO=∠ECO,進(jìn)而證明∠ECO=∠ECB=∠FCO=30°,2BE=CE,利用勾股定理得出BC=,再解得菱形的面積為2,最后由陰影部分的面積=S菱形AECF解題.【詳解】解:∵四邊形AECF是菱形,AB=3,∴假設(shè)BE=x,則AE=3﹣x,CE=3﹣x,∵四邊形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又∵AE=AB﹣BE=3﹣1=2,則菱形的面積是:AE?BC=2.∴陰影部分的面積=S菱形AECF=cm2.故選:D.【考點】本題考查菱形的性質(zhì)、勾股定理、含30°直角三角形的性質(zhì)等知識,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.2、B【解析】【分析】根據(jù)垂線段最短可得PN⊥OA時,PN最短,再根據(jù)角平分線上的點到角的兩邊的距離相等可得PM=PN,再結(jié)合勾股定理求解即可.【詳解】解:當(dāng)PN⊥OA時,PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵,,,∴由勾股定理可知:PM=3,∴PN的最小值為3.故選B.【考點】本題考查了角平分線上的點到角的兩邊的距離相等的性質(zhì),垂線段最短的性質(zhì)及勾股定理,熟記性質(zhì)是解題的關(guān)鍵.3、C【解析】【分析】如圖,由題意知,,,,可知三點共線,與重合,在中,由勾股定理得,求的值,設(shè),,在中,由勾股定理得,計算求解即可.【詳解】解:如圖,∵是直角∴由題意知,,∴∴三點共線∴與重合在中,由勾股定理得設(shè),在中,由勾股定理得即解得∴的長為故選C.【考點】本題考查了折疊的性質(zhì),勾股定理等知識.解題的關(guān)鍵在于明確三點共線,與重合.4、C【解析】【詳解】分兩種情況:在圖①中,由勾股定理,得;;∴BC=BD+CD=8+2=10.在圖②中,由勾股定理,得;;∴BC=BD―CD=8―2=6.故選C.5、A【解析】【分析】先根據(jù)勾股定理求得AB的長,再根據(jù)折疊的性質(zhì)求得AE,BE的長,從而利用勾股定理可求得CD的長.【詳解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折疊的性質(zhì)得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm?6cm=4cm,∠BED=90°,設(shè)CD=x,則BD=BC?CD=8?x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8?x)2,解得:x=3,∴CD=3cm,故選:A.【考點】本題考查了折疊的性質(zhì),勾股定理等知識;熟記折疊性質(zhì)并表示出Rt△DEB的三邊,然后利用勾股定理列出方程是解題的關(guān)鍵.6、B【解析】【分析】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形.【詳解】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形,如圖所示:故選B.【考點】本題主要考查了勾股定理的證明,證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用大圖形的面積等于幾個小圖形的面積和化簡整理得到勾股定理.7、B【解析】【分析】根據(jù)勾股定理求出AB的長,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【詳解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故選:B.【考點】此題考查了勾股定理的應(yīng)用,翻折的性質(zhì),熟記勾股定理的計算公式是解題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)數(shù)軸上點的特點和相關(guān)線段的長,結(jié)合勾股定理求出斜邊長,即可求出-1和A之間的線段的長,即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長為,那么-1和A之間的距離為,那么數(shù)軸上點A所表示的數(shù)為:.故答案為:.【考點】本題考查實數(shù)與數(shù)軸之間的對應(yīng)關(guān)系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長是解答本題的關(guān)鍵.2、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長,再根據(jù)三角形的面積為定值即可求出則點C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點】本題考查了勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題的關(guān)鍵3、7【解析】【分析】根據(jù)勾股定理求得BC,再根據(jù)折疊性質(zhì)得到AE=CE,進(jìn)而由三角形的周長=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長=AB+BC=3+4=7.故答案是:7.【考點】本題考查勾股定理、折疊性質(zhì),熟練掌握勾股定理是解答的關(guān)鍵.4、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長,同理可得出AB的長,進(jìn)而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時,勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.5、m2+1【解析】【分析】2m為偶數(shù),設(shè)其股是a,則弦為a+2,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】∵2m為偶數(shù),∴設(shè)其股是a,則弦為a+2,根據(jù)勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,∴弦長為m2+1,故答案為:m2+1.【考點】本題考查了勾股數(shù),勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.6、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動前和滑動后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.7、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長,進(jìn)而可得出BD的長,根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長.【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.8、12【解析】【分析】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點】本題主要考查勾股定理的應(yīng)用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.三、解答題1、(1)會,理由見解析;(2)7h【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進(jìn)而利用三角形面積得出CD的長,從而判斷出海港C是否受臺風(fēng)影響;(2)利用勾股定理得出ED以及EF的長,進(jìn)而得出臺風(fēng)影響該海港持續(xù)的時間.【詳解】解:(1)如圖所示,過點C作CD⊥AB于D點,∵AC=300km,BC=400km,AB=500km,∴,∴△ABC為直角三角形,∴,∴,∴,∵以臺風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域,∴海港C會受到臺風(fēng)影響;(2)由(1)得CD=240km,如圖所示,當(dāng)EC=FC=250km時,即臺風(fēng)經(jīng)過EF段時,正好影響到海港C,此時△ECF為等腰三角形,∵,∴EF=140km,∵臺風(fēng)的速度為20km/h,∴140÷20=7h,∴臺風(fēng)影響該海港持續(xù)的時間有7h.【考點】本題考查的是勾股定理在實際生活中的運用,解答此類題目的關(guān)鍵是構(gòu)造出直角三角形,再利用勾股定理解答.2、(1)見解析;(2)【解析】【分析】(1)根據(jù)平行可得∠DBE=90°,再由HL定理證明直角三角形全等即可;(2)構(gòu)造,利用矩形性質(zhì)和勾股定理即可求出AE長.【詳解】(1)∵AC∥BE,∴∠C+∠DBE=180°.∴∠DBE=180°-∠C=180°-90°=90°.∴△ABC和△DEB都是直角三角形.∵點D為BC的中點,,∴AC=DB.
∵AB=DE,∴Rt△ABC≌Rt△DEB(HL).(2).過程如下:連接AE、過A點作AH⊥BE,∵∠C=90°,∠DBE=90°.∴,,∴AH=BC=4,,∴,在中,.【考點】本題主要考查了直角三角形全等的判定和勾股定理解三角形,解題關(guān)鍵是構(gòu)造直角三角形,利用用平行線間的距離處處相等得線段AH=BC,從而利用勾股定理求AE.3、(1)OAn2=n;Sn=;(2)OA10=;(3)說明他是第20個三角形;(4).【解析】【分析】(1)利用已知可得OAn2,注意觀察數(shù)據(jù)的變化,(2)結(jié)合(1)中規(guī)律即可求出OA102的值即可求出,(3)若一個三角形的面積是,利用前面公式可以得到它是第幾個三角形,(4)根據(jù)題意列出式子即可求出.【詳解】(1)結(jié)合已知數(shù)據(jù),可得:OAn2=n;Sn=;(2)∵OAn2=n,∴OA10=;(3)若一個三角形的面積是,根據(jù):Sn==,∴=2=,∴說明他是第20個三角形,(4)S12+S22+S32+…+S102,=,=,=,=.故答案為(1)OAn2=n;Sn=;(2)OA10=;(3)說明他是第20個三角形;(4).【考點】本題考查規(guī)律型:圖形的變化類,勾股定理的應(yīng)用.4、它至少5.2秒能趕回巢中.【解析】【分析】過點作于點.求出AF,EF,再根據(jù)勾股定理求出AE,從而求出時間.【詳解】解:如圖所示,米,米,米,米.過點作于點.在中,米,米,所以.所以喜鵲離巢的距離米.喜鵲趕回巢所需的時間為(秒).即它至少5.2秒能趕回巢中.【考點】考核知識點:勾股定理和逆定理運用.構(gòu)造直角三角形是解題關(guān)鍵.5、(1)+;(2)污水廠位置見解析,排污管道最短長度為10km;(3)13【解析】【分析】(1)依據(jù)ED=x,AC⊥CD、BD⊥CD,故根據(jù)勾股定理可用x表示出AE+BE的長;(2)根據(jù)兩點之間線段最短可知連接AB與CD的交點就是污水處理廠E的位置.過點B作BF⊥AC于F,構(gòu)造出直角三角形,利用勾股定理求出AB的長;(3)根據(jù)AE+BE=+=AB=10,可猜想所求代數(shù)式的值為13.(1)解:在Rt△ACE和Rt△BDE中,根據(jù)勾股定理可得AE=,BE=,∴AE+BE=+;(2)解:根據(jù)兩點之間線段最短可知,連接AB與CD的交點就是污水處理廠E的位置,如圖:過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GAT 1481.2-2018北斗全球衛(wèi)星導(dǎo)航系統(tǒng)公安應(yīng)用 第2部分:終端定位技術(shù)要求》專題研究報告
- 養(yǎng)老院服務(wù)質(zhì)量監(jiān)督與投訴處理制度
- 企業(yè)員工培訓(xùn)與技能發(fā)展路徑制度
- 企業(yè)內(nèi)部保密協(xié)議簽訂制度
- 養(yǎng)雞除草技術(shù)培訓(xùn)課件
- 2026湖南岳陽汨羅市第三人民醫(yī)院面向社會招聘編外勞務(wù)派遣制專業(yè)技術(shù)人員7人參考題庫附答案
- 2026湖南長沙市森林公安局招聘普通雇員1人參考題庫附答案
- 2026福建省面向重慶大學(xué)選調(diào)生選拔工作備考題庫附答案
- 2026西北工業(yè)大學(xué)動力與能源學(xué)院葉輪機氣熱彈研究所招聘1人(陜西)參考題庫附答案
- 公共交通線路審批管理制度
- 汽機專業(yè)安全培訓(xùn)課件
- 鋼結(jié)構(gòu)工程全面質(zhì)量通病圖冊
- 宮頸TCT診斷課件
- 2026高考藍(lán)皮書高考關(guān)鍵能力培養(yǎng)與應(yīng)用1.批判性與創(chuàng)造性思維能力的基礎(chǔ)知識
- 多學(xué)科團隊(MDT)中的醫(yī)患溝通協(xié)同策略
- 期末復(fù)習(xí)知識點清單新教材統(tǒng)編版道德與法治七年級上冊
- 賬務(wù)清理合同(標(biāo)準(zhǔn)版)
- 投標(biāo)委托造價協(xié)議書
- 孕婦上班免責(zé)協(xié)議書
- 神經(jīng)內(nèi)科腦疝術(shù)后護理手冊
- 2026年包頭輕工職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫附答案
評論
0/150
提交評論