版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在正方形ABCD中,點O是對角線AC的中點,點E是邊BC上的一個動點,OE⊥OF,交邊AB于點F,點G,H分別是點E,F(xiàn)關于直線AC的對稱點,點E從點C運動到點B時,圖中陰影部分面積的大小變化是()A.先增大后減小 B.先減小后增大C.一直不變 D.不確定2、如圖,在矩形ABCD中,點F在AD上,點E在BC上,把矩形沿EF折疊后,使點D恰好落
在BC邊上的G點處,若矩形面積為且∠AFG=60°,GE=2BG,則折痕EF的長為()A.1 B. C.2 D.3、若關于x的一元二次方程(k+2)x2﹣3x+1=0有實數(shù)根,則k的取值范圍是(
)A.k<且k≠﹣2 B.k≤ C.k≤且k≠﹣2 D.k≥4、如圖,在矩形ABCD中,AB=3,BC=5,點E為CB上一動點(不與點C重合),將△CDE沿DE所在直線折疊,點C的對應點C'恰好落在AE上,則CE的長是()A. B.1 C.2 D.5、如圖,在中,,動點P,Q分別從點A,B同時開始移動(移動方向如圖所示),點P的速度為,點Q的速度為,點Q移動到C點后停止,點P也隨之停止運動,當?shù)拿娣e為時,則點P運動的時間是(
)A. B.或 C. D.6、把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,則a,b,c的值分別為()A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,107、如圖,將圖1中的菱形紙片沿對角線剪成4個直角三角形,拼成如圖2的四邊形(相鄰紙片之間不重疊,無縫隙).若四邊形的面積為13,中間空白處的四邊形的面積為1,直角三角形的兩條直角邊分別為和,則(
)A.12 B.13 C.24 D.25二、多選題(3小題,每小題2分,共計6分)1、如圖,將ABC沿射線BC向右平移到DCE,連接AD,BD.添加下列條件,能判斷四邊形ABCD是菱形的有(
)A.AC=BDB.AB=ADC.AC⊥BDD.ABC為等邊三角形2、用公式解方程正確的是(
)A. B. C. D.3、下列命題中不是真命題的是(
)A.兩邊相等的平行四邊形是菱形B.一組對邊平行一組對邊相等的四邊形是平行四邊形C.兩條對角線相等的平行四邊形是矩形D.對角線互相垂直且相等的四邊形是正方形第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、如圖,四邊形、是正方形,點、分別在、上,連接,過點作,交于點,若,,則________.2、如圖,在平面直角坐標系中,長方形OABC的邊OA在x軸上,OC在y軸上,OA=1,OC=2,對角線AC的垂直平分線交AB于點E,交AC于點D.若y軸上有一點P(不與點C重合),能使△AEP是以為AE為腰的等腰三角形,則點P的坐標為____.3、對任意實數(shù)a,b,定義一種運算:,若,則x的值為_________.4、一個直角三角形的兩條直角邊相差5cm,面積是7cm2,則其斜邊的長是___.5、如圖,在ABC中,點D、E、F分別在邊AB、BC、CA上,且DE∥CA,DF∥BA,下列四種說法:①四邊形AEDF是平行四邊形;②如果∠BAC=90°,那么四邊形AEDF是菱形;③如果AD平分∠BAC,那么四邊形AEDF是菱形;④如果AB=AC,那么四邊形AEDF是菱形.其中,正確的有_____.(只填寫序號)6、如圖,矩形紙片ABCD,AD=4,AB=3.如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,如果直線EF經(jīng)過點D,那么線段BE的長是____.7、若正方形的對角線的長為4,則該正方形的面積為_________.8、“降次”是解一元二次方程的基本思想,用這種思想解高次方程x3-x=0,它的解是_____________.9、如圖,將正方形OEFG放在平面直角坐標系中,O是坐標原點,點E的坐標為(2,3),則點F的坐標為_____.10、如圖都是由同樣大小的小球按一定規(guī)律排列的,依照此規(guī)律排列下去,第___個圖形共有210個小球.四、解答題(6小題,每小題10分,共計60分)1、如圖,在?ABCD中,對角線AC與BD相交于點O,點E,F(xiàn)分別為OB,OD的中點,延長AE至點G,使EG=AE,連接CG.(1)求證:△ABE≌△CDF;(2)當AB與AC滿足什么數(shù)量關系時,四邊形EGCF是矩形?請說明理由.2、發(fā)現(xiàn):四個連續(xù)的整數(shù)的積加上是一個整數(shù)的平方.驗證:(1)的結(jié)果是哪個數(shù)的平方?(2)設四個連續(xù)的整數(shù)分別為,試證明他們的積加上是一個整數(shù)的平方;延伸:(3)有三個連續(xù)的整數(shù),前兩個整數(shù)的平方和等于第三個數(shù)的平方,試求出這三個整數(shù)分別是多少.3、如圖,在平面直角坐標系中,點是坐標原點,四邊形是菱形,點的坐標為,點在軸的正半軸上,直線交軸于點,邊交軸于點,連接.(1)填空:菱形的邊長_________;(2)求直線的解析式;(3)動點從點出發(fā),沿折線方向以3個單位/秒的速度向終點勻速運動,設的面積為,點的運動時間為秒,①當時,求與之間的函數(shù)關系式;②在點運動過程中,當,請直接寫出的值.4、如圖,在的正方形網(wǎng)格中,網(wǎng)格線的交點稱為格點,在格點上,每一個小正方形的邊長為1.(1)以為邊畫菱形,使菱形的其余兩個頂點都在格點上(畫出一個即可).(2)計算你所畫菱形的面積.5、已知關于的一元二次方程有實數(shù)根.(1)求的取值范圍.(2)若該方程的兩個實數(shù)根為、,且,求的值.6、安順市某商貿(mào)公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量(千克)與每千克降價(元)之間滿足一次函數(shù)關系,其圖象如圖所示:(1)求與之間的函數(shù)關系式;(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應降價多少元?-參考答案-一、單選題1、C【解析】【分析】連接BD,證明△FOB≌△EOC,同理得到△HOD≌△GOC,即可得到答案.【詳解】解:連接BD,∵四邊形ABCD是正方形,∴∠BOC=90°,,∴∠BOЕ+∠EOC=90°,∵OE⊥OF,∴∠BOE+∠FOB=90°,∴∠FOB=∠EOC,在△FOB和△EOC,,∴△FOB≌△EOC,同理,△HOD≌△GOC,∴圖中陰影部分的面積=△ABD的面積=正方形ABCD的面積.∴陰影部分面積的大小一直不變.故選:C.【考點】本題考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì),掌握正方形的性質(zhì)、全等三角形的判定定理和性質(zhì)定理是解題的關鍵.2、A【解析】【分析】由折疊的性質(zhì)得,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE,結(jié)合∠AFG=60°可得∠GFE=60°,即△GEF為等邊三角形,在Rt△GHE中,解直角三角形得到GE=2EC,DC=EC,再由GE=2BG,結(jié)合矩形面積為,求出EC,最后根據(jù)EF=GE=2EC即可解答.【詳解】解:由折疊的性質(zhì)可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE,∵∠AFG=60°∴∠GFE+∠DFE=180°-∠AFG=120°∴∠GFE=60°∵AF∥GE,∠AFG=60°∴∠FGE=∠AFG=60°∴△GEF為等邊三角形∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°∴∠HGE=30°在Rt△GHE中,∠HGE=30°∴GE=2HE=2CE.∴GH==HE=CE∴GE=2BG,∴BC=BG+GE+EC=4EC∵矩形ABCD的面積為4.∴4EC·EC=.∴EC=,∵GE=2HE=2CE.∴EF=GE=1故答案為A.【考點】本題考查了矩形的翻折變換、等邊三角形的判定及性質(zhì)、含30度角的直角三角形的性質(zhì)、勾股定理等知識,根據(jù)邊角關系和解直角三角形找出確定BC=4EC,DC=EC是解答本題的關鍵.3、C【解析】【分析】根據(jù)一元二次方程的定義和根的判別式得出k+2≠0且△=(-3)2-4(k+2)?1≥0,求出即可.【詳解】∵關于x的一元二次方程(k+2)x2-3x+1=0有實數(shù)根,∴k+2≠0且△=(-3)2-4(k+2)?1≥0,解得:k≤且k≠-2,故選C.【考點】本題考查了一元二次方程的定義和根的判別式,能得出關于k的不等式是解此題的關鍵.4、B【解析】【分析】由矩形的性質(zhì)得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折疊的性質(zhì)得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.【詳解】解:∵四邊形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折疊的性質(zhì)得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'==4,設CE=C'E=x,在Rt△ABE中,BE=5-x,AE=x+4,由勾股定理得:(5-x)2+32=(x+4)2,解得:x=1,故選:B.【考點】本題考查了翻折變換的性質(zhì)、矩形的性質(zhì)、勾股定理等知識;熟練掌握翻折變換和矩形的性質(zhì),由勾股定理得出方程是解題的關鍵.5、A【解析】【分析】設出動點P,Q運動t秒,能使的面積為,用t分別表示出BP和BQ的長,利用三角形的面積計算公式即可解答.【詳解】解:設動點P,Q運動t秒,能使的面積為,則BP為(8-t)cm,BQ為2tcm,由三角形的面積公式列方程得(8-t)×2t=15,解得t1=3,t2=5(當t2=5,BQ=10,不合題意,舍去)∴動點P,Q運動3秒,能使的面積為.故選A.【考點】本題考查了一元二次方程的應用.借助三角形的面積計算公式來研究圖形中的動點問題.6、D【解析】【分析】先把x2+2x=5(x﹣2)化簡,然后根據(jù)一元二次方程的一般形式即可得到a、b、c的值.【詳解】解:x2+2x=5(x﹣2),x2+2x=5x﹣10,x2+2x﹣5x+10=0,x2﹣3x+10=0,則a=1,b=﹣3,c=10,故選:D.【考點】此題主要考查了一元二次方程化為一般形式,熟練掌握一元二次方程的一般形式是解題的關鍵.7、D【解析】【分析】根據(jù)菱形的性質(zhì)可得對角線互相垂直平分,進而可得4個直角三角形全等,結(jié)合已知條件和勾股定理求得,進而根據(jù)面積差以及三角形面積公式求得,最后根據(jù)完全平方公式即可求得.【詳解】菱形的對角線互相垂直平分,個直角三角形全等;,,,四邊形是正方形,又正方形的面積為13,正方形的邊長為,根據(jù)勾股定理,則,中間空白處的四邊形的面積為1,個直角三角形的面積為,,,,.故選D.【考點】本題考查了正方形的性質(zhì)與判定,菱形的性質(zhì),勾股定理,完全平方公式,求得是解題的關鍵.二、多選題1、BCD【解析】【分析】根據(jù)將沿射線向右平移到,推出四邊形是平行四邊形,再根據(jù)菱形的判定定理對每個選項進行判定即可.【詳解】解:∵將沿射線向右平移到∴,∴四邊形是平行四邊形當時,根據(jù)對角線相等的平行四邊形是矩形,可得四邊形是矩形,故A選項不符合題意;當時,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得四邊形是菱形,故B選項符合題意;當時,根據(jù)對角線互相垂直的平行四邊形是菱形,可得四邊形是菱形,故C選項符合題意;當是等邊三角形時,,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得四邊形是菱形,故D選項符合題意;故選:BCD.【考點】本題考查了平移、平行四邊形的判定、菱形的判定、等邊三角形的性質(zhì)等知識點,熟練掌握菱形的判定定理是解答本題的關鍵.2、AC【解析】【分析】求出的值,再代入公式求出即可.【詳解】∴方程有兩個不相等的實數(shù)根∴,∴,故選AC.【考點】本題考查了解一元二次方程的應用,能正確利用公式解一元二次方程是解此題的關鍵.3、ABD【解析】【分析】利用平行四邊形、矩形、菱形及正方形的判定方法分別判斷即可.【詳解】A選項:有一組鄰邊相等的平行四邊形是菱形,故原命題錯誤,是假命題,符合題意;B選項:一組對邊平行且相等的四邊形是平行四邊形,故原命題錯誤,是假命題,符合題意;C選項:兩條對角線相等的平行四邊形是矩形,故原命題正確,是真命題,不符合題意;D選項:兩條對角線互相垂直且相等的平行四邊形是正方形,故原命題錯誤,是假命題,符合題意.故選:ABD.【考點】考查了平行四邊形、菱形、矩形和正方形的判定,解題關鍵是熟練掌握特殊四邊形的判定方法.三、填空題1、【解析】【分析】求出BE的長,再根據(jù)兩組對邊分別平行的四邊形是平行四邊形求出四邊形EFCH是平行四邊形,根據(jù)平行四邊形的對邊相等可得EF=CH,再根據(jù)正方形的性質(zhì)可得AB=BC,AE=EF,然后求出BH=BE即可得解.【詳解】∵AB=4,AE=1,∴BE=AB?AE=4?1=3,∵四邊形ABCD,AEFG都是正方形,∴AD∥EF∥BC,又∵EH∥FC,∴四邊形EFCH平行四邊形,∴EF=CH,∵四邊形ABCD,AEFG都是正方形,∴AB=BC,AE=EF,∴AB?AE=BC?CH,∴BE=BH=3.故答案為3.【考點】本題主要考查正方形和平行四邊形,掌握正方形與平行四邊形的判定與性質(zhì)是解題的關鍵.2、,或【解析】【分析】設AE=m,根據(jù)勾股定理求出m的值,得到點E(1,),設點P坐標為(0,y),根據(jù)勾股定理列出方程,即可得到答案.【詳解】∵對角線AC的垂直平分線交AB于點E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴設AE=m,則BE=2-m,CE=m,∴在Rt?BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),設點P坐標為(0,y),∵△AEP是以為AE為腰的等腰三角形,當AP=AE,則(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,當EP=AE,則(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴點P的坐標為,,,故答案是:,,.【考點】本題主要考查等腰三角形的定義,勾股定理,矩形的性質(zhì),垂直平分線的性質(zhì),掌握勾股定理,列出方程,是解題的關鍵.3、2或-3##-3或2【解析】【分析】根據(jù)題意得到關于x的一元二次方程,解方程即可.【詳解】解:∵,∴,∴,解得或,故答案為:2或-3.【考點】本題主要考查了新定義下的實數(shù)運算,解一元二次方程,正確理解題意是解題的關鍵.4、cm【解析】【分析】設較短的直角邊長是xcm,較長的就是(x+5)cm,根據(jù)面積是7cm,求出直角邊長,根據(jù)勾股定理求出斜邊長.【詳解】解:設這個直角三角形的較短直角邊長為xcm,則較長直角邊長為(x+5)cm,根據(jù)題意,得,所以,解得,,因為直角三角形的邊長為正數(shù),所以不符合題意,舍去,所以x=2,當x=2時,x+5=7,由勾股定理,得直角三角形的斜邊長為==cm.故答案為:cm.【考點】本題考查了勾股定理,一元二次方程的應用,關鍵是知道三角形面積公式以及直角三角形中勾股定理的應用.5、①③【解析】【分析】根據(jù)平行四邊形的判定和菱形的判定解答即可.【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,故①正確;∵∠BAC=90°,四邊形AEDF是平行四邊形,∴四邊形AEDF是矩形,故②錯誤;∵AD平分∠BAC,四邊形AEDF是平行四邊形,∴四邊形AEDF是菱形,故③正確;∵AB=AC,四邊形AEDF是平行四邊形,不能得出AE=AF,故四邊形AEDF不一定是菱形,故④錯誤;故答案為:①③.【考點】此題考查菱形的判定,關鍵是就平行四邊形的判定和菱形的判定解答.6、【解析】【分析】根據(jù)題意作出圖形,根據(jù)矩形的性質(zhì)與折疊的性質(zhì)證明,進而勾股定理求得,即可求得,根據(jù)折疊,即可求解.【詳解】解:如圖∵將紙片沿AE折疊,使點B落在點F處,四邊形ABCD是矩形在中,故答案為:【考點】本題考查了矩形與折疊問題,勾股定理,掌握勾股定理是解題的關鍵.7、8【解析】【分析】根據(jù)正方形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:∵正方形的一條對角線的長為4,∴這個正方形的面積=×42=8.故答案為:8.【考點】本題考查了正方形的性質(zhì),熟練掌握正方形的面積的兩種求法是解題的關鍵.8、【解析】【分析】先把方程的左邊分解因式,再化為三個一次方程進行降次,再解一次方程即可.【詳解】解:則或或解得:故答案為:【考點】本題考查的是利用因式分解的方法把高次方程轉(zhuǎn)化為一次方程,掌握“因式分解的方法與應用”是解本題的關鍵.9、(﹣1,5)【解析】【詳解】【分析】結(jié)合全等三角形的性質(zhì)可以求得點G的坐標,再由正方形的中心對稱的性質(zhì)求得點F的坐標.【詳解】如圖,過點E作x軸的垂線EH,垂足為H.過點G作x軸的垂線GM,垂足為M,連接GE、FO交于點O′,∵四邊形OEFG是正方形,∴OG=EO,∠GOM+∠EOH=90°∠GOM=∠OEH,∠OGM=∠EOH,在△OGM與△EOH中,,∴△OGM≌△EOH(ASA),∴GM=OH=2,OM=EH=3,∴G(﹣3,2),∴O′(﹣,),∵點F與點O關于點O′對稱,∴點F的坐標為(﹣1,5),故答案是:(﹣1,5).【考點】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、中點坐標公式等,正確添加輔助線以及熟練掌握和運用相關內(nèi)容是解題的關鍵.10、20【解析】【分析】根據(jù)已知圖形得出第n個圖形中黑色三角形的個數(shù)為1+2+3++n=,列一元二次方程求解可得.【詳解】解:∵第1個圖形中黑色三角形的個數(shù)1,第2個圖形中黑色三角形的個數(shù)3=1+2,第3個圖形中黑色三角形的個數(shù)6=1+2+3,第4個圖形中黑色三角形的個數(shù)10=1+2+3+4,……∴第n個圖形中黑色三角形的個數(shù)為1+2+3+4+5++n=,當共有210個小球時,,解得:或(不合題意,舍去),∴第個圖形共有210個小球.故答案為:.【考點】本題考查了圖形的變化規(guī)律,解一元二次方程,解題的關鍵是得出第n個圖形中黑色三角形的個數(shù)為1+2+3+……+n.四、解答題1、(1)見解析(2)當AC=2AB時,四邊形EGCF是矩形.理由見解析【解析】【分析】(1)由平行四邊形的性質(zhì)得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行線的性質(zhì)得出∠ABE=∠CDF,中點證出BE=DF,證明△ABE≌△CDF即可;(2)證出AB=OA,由等腰三角形的性質(zhì)得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由全等可以推出EG=CF,又因為∠OEG=90°,得出四邊形EGCF是矩形,即可得出結(jié)論.(1)證明:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF.∵點E,F(xiàn)分別為OB,OD的中點,∴BE=OB,DF=OD,∴BE=DF.在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).(2)解:當AC=2AB時,四邊形EGCF是矩形.理由如下:∵AC=2OA,AC=2AB,∴AB=OA=OC=CD.∵點E是OB的中點,∴AG⊥OB,∴∠OEG=90°,∵OC=CD,F(xiàn)是OD的中點,∴CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得△ABE≌△CDF,∴AE=CF.∵EG=AE,∴EG=CF,∴四邊形EGCF是平行四邊形.又∵∠OEG=90°,∴四邊形EGCF是矩形.【考點】本題主要考查了平行四邊形的性質(zhì)和判定、矩形的判定、全等三角形的判定、平行線的性質(zhì).2、(1)3×4×5×6+1的結(jié)果是19的平方;(2)見解析;(3)這三個連續(xù)的整數(shù)分別是3、4、5或-1、0、1【解析】【分析】(1)按照有理數(shù)的乘法計算出結(jié)果,即可判斷是19的平方;(2)設出四個連續(xù)整數(shù),根據(jù)題意得到式子,對式子進行轉(zhuǎn)化,利用完全平方公式得到一個整數(shù)的平方;(3)設中間的整數(shù)是x,則另外兩個整數(shù)分別為x-1、x+1,根據(jù)“前兩個整數(shù)的平方和等于第三個數(shù)的平方”,列出方程求解即可.【詳解】(1)3×4×5×6+1=361=192,即3×4×5×6+1的結(jié)果是19的平方;(2)設這四個連續(xù)整數(shù)依次為:n-1,n,n+1,n+2,則(n-1)n(n+1)(n+2)+1,=[(n-1)(n+2)][n(n+1)]+1=(n2+n-2)(n2+n)+1=(n2+n)2-2(n2+n)+1=(n2+n-1)2.故四個連續(xù)整數(shù)的積加上1是一個整數(shù)的平方;(3)設中間的整數(shù)是x,則第一個是x-1,第三個是x+1,根據(jù)題意得(x-1)2+x2=(x+1)2解之得x1=4,x2=0,則x-1=3,x+1=5,或x-1=-1,x+1=1,x=0,答:這三個整數(shù)分別是3、4、5或-1、0、1.【考點】本題考查了一元二次方程的應用,因式分解的應用;利用完全平方公式得到一個整數(shù)的平方是正確解答本題的關鍵.3、(1)5(2)(3)①;②或【解析】【分析】(1)在Rt△AOH中利用勾股定理即可求得菱形的邊長;(2)根據(jù)(1)即可求的OC的長,則C的坐標即可求得,利用待定系數(shù)法即可求得直線AC的解析式;(3)①根據(jù)S△ABC=S△AMB+SBMC求得M到直線BC的距離為h,然后分成P在AB上和在BC上兩種情況討論,利用三角形的面積公式求解.②將S=2代入①中的函數(shù)解析式求得相應的t的值.(1)解:點的坐標為,在Rt△AOH中,故答案為:5;(2)∵四邊形ABCO是菱形,∴OC=OA=AB=5,即C(5,0).設直線AC的解析式y(tǒng)=kx+b,函數(shù)圖像過點A、C,得,解得,直線AC的解析式為,(3)由,令,,則,則,①當0<t<時,BP=BA-AP=5-3t,HM=OH-O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年云南理工職業(yè)學院單招職業(yè)技能考試題庫附答案解析
- 2023年阜陽幼兒師范高等專科學校單招職業(yè)適應性測試題庫附答案解析
- 2023年黑龍江省綏化市單招職業(yè)適應性測試題庫附答案解析
- 2025年山東省萊蕪市單招職業(yè)傾向性考試模擬測試卷附答案解析
- 2025年江蘇省南京市單招職業(yè)適應性考試模擬測試卷附答案解析
- 2024年寧夏職業(yè)技術(shù)學院單招職業(yè)適應性考試模擬測試卷附答案解析
- 2025年長春汽車職業(yè)技術(shù)大學單招職業(yè)傾向性測試模擬測試卷附答案解析
- 重度子癇前期課件
- 貓和老鼠懲罰課件
- 采煤機的使用與維護課件
- 四川省教育考試院2025年公開招聘編外聘用人員筆試考試參考試題及答案解析
- 2025年中級煤礦綜采安裝拆除作業(yè)人員《理論知識》考試真題(含解析)
- 2026年鄂爾多斯生態(tài)環(huán)境職業(yè)學院單招職業(yè)適應性測試題庫必考題
- 防噴演練及硫化氫防護流程
- 外貿(mào)入職培訓課件大綱
- 2025佛山農(nóng)商銀行社會招聘考試備考題庫及答案解析
- 混合性認知障礙診治專家共識解讀課件
- 醫(yī)院保密教育培訓課件
- 2026年高考語文復習:文言文背誦篇目理解性默寫練習題匯編(含答案)
- 2025年衛(wèi)健系統(tǒng)安全生產(chǎn)工作總結(jié)
- (高清版)DB31∕T 1290-2021 造(修)船舶企業(yè)明火作業(yè)安全規(guī)程
評論
0/150
提交評論