天津農(nóng)學院《包裝策劃與設計》2024-2025學年第一學期期末試卷_第1頁
天津農(nóng)學院《包裝策劃與設計》2024-2025學年第一學期期末試卷_第2頁
天津農(nóng)學院《包裝策劃與設計》2024-2025學年第一學期期末試卷_第3頁
天津農(nóng)學院《包裝策劃與設計》2024-2025學年第一學期期末試卷_第4頁
天津農(nóng)學院《包裝策劃與設計》2024-2025學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

裝訂線裝訂線PAGE2第1頁,共2頁天津農(nóng)學院《包裝策劃與設計》2024-2025學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺中的圖像風格遷移是一項有趣的任務。假設要將一幅油畫的風格應用到一張照片上,以下關于模型訓練的要點,哪一項是不正確的?()A.學習油畫和照片的特征表示,找到風格和內(nèi)容的分離方式B.只關注風格的遷移,不考慮照片原始內(nèi)容的保留C.采用對抗訓練,使生成的圖像在風格和內(nèi)容上達到平衡D.調(diào)整模型參數(shù),控制風格遷移的強度和效果2、計算機視覺中的圖像配準是將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設要將兩張拍攝角度不同的衛(wèi)星圖像進行配準,以下關于圖像配準方法的描述,哪一項是不正確的?()A.基于特征的圖像配準方法通過提取圖像中的顯著特征,并進行匹配來實現(xiàn)配準B.基于灰度的圖像配準方法直接比較圖像的灰度值,計算相似性度量來完成配準C.圖像配準的精度主要取決于特征提取的準確性和匹配算法的性能D.圖像配準總是能夠完美地將兩張圖像對齊,不存在任何誤差3、在計算機視覺中,目標檢測是一項重要任務。假設我們要開發(fā)一個能夠在交通場景中檢測車輛的系統(tǒng)。如果圖像中的車輛存在多種姿態(tài)、大小和光照條件的變化,以下哪種目標檢測算法可能更適合應對這種復雜情況?()A.基于傳統(tǒng)特征的檢測算法,如HOG特征結合SVM分類器B.基于深度學習的FasterR-CNN算法C.基于模板匹配的檢測算法D.基于顏色特征的檢測算法4、在計算機視覺的場景理解任務中,假設要理解一個室內(nèi)場景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對于準確理解場景是至關重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機選擇圖像中的部分區(qū)域進行分析5、在計算機視覺的圖像質(zhì)量評估任務中,假設要評估一張經(jīng)過處理后的圖像的質(zhì)量。以下關于圖像質(zhì)量評估方法的描述,正確的是:()A.主觀評估方法通過人的觀察和判斷來評價圖像質(zhì)量,結果準確可靠B.客觀評估方法中的全參考方法需要原始未失真圖像作為參考,計算復雜度低C.無參考圖像質(zhì)量評估方法能夠在沒有原始圖像的情況下準確評估圖像質(zhì)量D.所有的圖像質(zhì)量評估方法都能夠完全反映人對圖像質(zhì)量的主觀感受6、計算機視覺中,以下哪種技術常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是7、假設要構建一個能夠識別人臉表情的計算機視覺系統(tǒng),用于情感分析和人機交互??紤]到表情的細微變化和個體差異,以下哪種模型架構可能更適合處理這種復雜的任務?()A.多層感知機B.卷積神經(jīng)網(wǎng)絡C.循環(huán)神經(jīng)網(wǎng)絡D.生成對抗網(wǎng)絡8、計算機視覺中的姿態(tài)估計任務,確定物體在空間中的位置和方向。假設要估計一個機器人手臂的姿態(tài),以下關于姿態(tài)估計方法的描述,正確的是:()A.基于幾何模型的姿態(tài)估計方法在復雜環(huán)境中總是能夠準確估計姿態(tài)B.深度學習中的端到端姿態(tài)估計網(wǎng)絡不需要對物體的結構和運動有先驗了解C.姿態(tài)估計的結果不受相機參數(shù)和拍攝角度的影響D.結合多種傳感器數(shù)據(jù)和深度學習的方法可以提高姿態(tài)估計的精度和魯棒性9、計算機視覺中的動作識別用于分析視頻中的人體動作。假設要識別一段舞蹈視頻中的動作類別。以下關于動作識別方法的描述,哪一項是不準確的?()A.可以基于時空特征提取的方法,捕捉動作在時間和空間上的變化B.深度學習中的循環(huán)神經(jīng)網(wǎng)絡(RNN)和長短時記憶網(wǎng)絡(LSTM)適用于動作序列的分析C.動作識別只需要關注人體的關節(jié)位置,不需要考慮人體的整體形態(tài)D.多模態(tài)數(shù)據(jù)融合,如結合音頻和視頻信息,可以提高動作識別的準確率10、在計算機視覺的行人重識別任務中,即在不同攝像頭拍攝的圖像中識別出同一個行人,假設行人的姿態(tài)和服裝發(fā)生了較大變化,以下哪種特征可能具有更強的魯棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于顏色特征的描述D.基于形狀特征的描述11、圖像分類是計算機視覺的常見任務之一。假設要對大量的自然風景圖片進行分類,如山脈、森林、海灘等。在進行圖像分類時,以下關于數(shù)據(jù)增強的方法,哪一項可能不太有效?()A.對圖像進行隨機裁剪和旋轉,增加數(shù)據(jù)的多樣性B.改變圖像的色彩和對比度,模擬不同的拍攝條件C.直接復制原圖像,增加數(shù)據(jù)量D.給圖像添加隨機噪聲,增強模型的魯棒性12、在計算機視覺的圖像去噪任務中,去除圖像中的噪聲。假設要對一張受到嚴重噪聲污染的圖像進行去噪處理,以下關于圖像去噪方法的描述,正確的是:()A.均值濾波方法能夠在去除噪聲的同時很好地保留圖像的細節(jié)B.中值濾波對椒鹽噪聲的去除效果不佳C.基于深度學習的圖像去噪方法可以自適應地學習噪聲模式和圖像特征D.圖像去噪不會引入任何新的失真或模糊13、在計算機視覺的人物姿態(tài)估計任務中,需要確定圖像中人物的關節(jié)位置和姿態(tài)。假設要開發(fā)一個用于健身應用的姿態(tài)估計系統(tǒng),以下關于模型訓練數(shù)據(jù)的獲取,哪一項是比較困難的?()A.從公開的數(shù)據(jù)集獲取大量的人物姿態(tài)圖像B.自己拍攝不同人群在各種健身動作下的圖像C.利用合成數(shù)據(jù)生成多樣化的人物姿態(tài)樣本D.從社交媒體上收集用戶分享的健身照片14、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中有著重要的應用。假設要在VR游戲中實現(xiàn)真實的場景交互。以下關于計算機視覺在VR/AR中的描述,哪一項是不正確的?()A.可以通過對用戶的動作和姿態(tài)進行識別,實現(xiàn)自然的交互操作B.能夠?qū)⑻摂M物體與真實場景進行準確的融合和匹配C.計算機視覺技術可以提高VR/AR體驗的沉浸感和真實感D.VR/AR中的計算機視覺應用不存在任何技術挑戰(zhàn)和限制15、在計算機視覺的姿態(tài)估計任務中,需要確定物體在三維空間中的方向和位置。假設要估計一個機器人手臂的姿態(tài),以實現(xiàn)精確的控制和操作。以下哪種姿態(tài)估計方法在處理這種機械結構時準確性更高?()A.基于模型的姿態(tài)估計B.基于深度學習的姿態(tài)估計C.基于視覺慣性里程計的姿態(tài)估計D.基于幾何約束的姿態(tài)估計16、計算機視覺中的場景理解是一項具有挑戰(zhàn)性的任務。假設要理解一個城市街道的場景圖像,包括道路、建筑物、車輛和行人等元素。以下關于場景理解方法的描述,正確的是:()A.基于語義分割的方法能夠?qū)D像中的每個像素分類為不同的場景元素,但無法提供元素之間的關系B.目標檢測結合語義分割可以實現(xiàn)對場景的初步理解,但對于復雜的場景結構難以準確描述C.基于圖模型的方法能夠很好地表示場景元素之間的關系,但建模過程復雜,計算量大D.場景理解只需要對圖像中的可見元素進行分析,不需要考慮潛在的語義信息17、在計算機視覺的圖像去霧任務中,假設要去除一張有霧圖像中的霧氣,恢復清晰的場景。以下關于圖像去霧方法的描述,正確的是:()A.基于物理模型的去霧方法需要準確估計霧的濃度和傳播參數(shù),否則效果不佳B.基于深度學習的去霧方法能夠自動學習霧的特征,但對濃霧的處理能力有限C.圖像去霧后,顏色和對比度會發(fā)生嚴重失真,影響視覺效果D.所有的圖像去霧方法都能夠在各種復雜的霧天條件下取得理想的效果18、在一個基于計算機視覺的無人駕駛系統(tǒng)中,需要對道路場景進行理解和預測,例如判斷前方是否有行人橫穿馬路。為了實現(xiàn)準確的場景理解和預測,以下哪種技術可能是關鍵?()A.語義分割B.實例分割C.場景圖生成D.以上都是19、圖像分割是將圖像分成不同的區(qū)域或?qū)ο?。假設要對醫(yī)學影像中的腫瘤區(qū)域進行精確分割,以下關于圖像分割方法的描述,正確的是:()A.手動分割是最準確的方法,不需要借助計算機算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學影像分割問題C.深度學習中的全卷積網(wǎng)絡(FCN)及其變體在醫(yī)學圖像分割中具有很大的潛力D.圖像分割的結果只取決于所使用的分割算法,與圖像的預處理無關20、圖像分類是計算機視覺的基礎任務之一。假設要對大量的自然風景圖片進行分類,包括山脈、森林、海灘等不同類型,同時圖片可能存在不同的拍攝角度、光照條件和季節(jié)變化。為了能夠準確地對這些圖片進行分類,以下哪種特征提取方法與分類算法的組合最為有效?()A.SIFT特征+支持向量機B.HOG特征+決策樹C.卷積神經(jīng)網(wǎng)絡自動提取特征+深度學習分類器D.顏色直方圖特征+樸素貝葉斯二、簡答題(本大題共3個小題,共15分)1、(本題5分)計算機視覺中如何實現(xiàn)車道線檢測?2、(本題5分)說明計算機視覺在海洋監(jiān)測中的應用。3、(本題5分)描述計算機視覺在物流倉儲中的應用。三、分析題(本大題共5個小題,共25分)1、(本題5分)選取某食品品牌的產(chǎn)品包裝系列設計,分析其如何在統(tǒng)一風格下體現(xiàn)不同產(chǎn)品的特點。2、(本題5分)以可口可樂的廣告為例,分析其色彩運用、圖形設計和廣告語的創(chuàng)意。闡述這些元素如何共同傳達品牌價值觀,吸引消費者并保持品牌的活力。3、(本題5分)研究某品牌的電商平臺廣告設計中的創(chuàng)意表現(xiàn)形式,分析其如何運用獨特的表現(xiàn)形式吸引目標用戶點擊和購買產(chǎn)品。4、(本題5分)分析某

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論