版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
京改版數(shù)學9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,在正方形網(wǎng)格上有5個三角形(三角形的頂點均在格點上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,與①相似的三角形是(
)A.②④ B.②⑤ C.③④ D.④⑤2、反比例函數(shù)圖象的兩個分支分別位于第一、三象限,則一次函數(shù)的圖象大致是(
)A. B.C. D.3、下列說法中不正確的是()A.任意兩個等邊三角形相似 B.有一個銳角是40°的兩個直角三角形相似C.有一個角是30°的兩個等腰三角形相似 D.任意兩個正方形相似4、在平面直角坐標系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應的函數(shù)表達式為(
)A. B. C. D.5、已知函數(shù)是反比例函數(shù),圖象在第一、三象限內(nèi),則的值是()A.3 B.-3 C. D.6、如圖所示,某校數(shù)學興趣小組利用標桿測量建筑物的高度,已知標桿高,測得,,則建筑物的高是()A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、如圖,△ABC中,D在AB上,E在AC上,下列條件中,不能判定DE∥BC的是(
).A. B.C. D.2、如圖,在△ABC中,點D,E分別在邊AB、AC上,下列條件中能判斷△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.3、已知:線段a、b,且,則下列說法正確的是(
)A.a(chǎn)=2cm,b=3cm B.a(chǎn)=2k,b=3k(k≠0)C.3a=2b D.4、如圖,在⊙O中,AB是⊙O的直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.則下列結(jié)論中正確的是()A.∠BAD=∠ABC B.GP=GD C.點P是△ACQ的外心 D.AP?AD=CQ?CB5、如圖,正方形ABCD的邊長為8,點E、F分別在邊AD、BC上,將正方形沿EF折疊,使點A落在邊CD上的A′處,點B落在B′處,A′B′交BC于點G.下列結(jié)論正確的是(
)A.當A′為CD中點時,tan∠DA′E=B.當A′D∶DE∶A′E=3∶4∶5時,A′C=C.連接AA′,則AA′=EFD.當A′(點A′不與C、D重合)在CD上移動時,△A′CG周長隨著A′位置變化而變化6、如圖,在2×3的方格中,畫有格點△ABC,下列選項的方格中所畫格點三角形(陰影部分)與△ABC不相似的是()A. B. C. D.7、已知拋物線(,,是常數(shù),)經(jīng)過點,,當時,與其對應的函數(shù)值.下列結(jié)論正確的是(
)A. B.C. D.關于的方程有兩個不等的實數(shù)根第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關系式是____________,自變量x的取值范圍是____________.2、已知二次函數(shù)與x軸有兩個交點,把當k取最小整數(shù)時的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,若新圖象與直線有三個不同的公共點,則m的值為______.3、三角形ABC中,,,,則邊的長為_______.4、二次函數(shù)的最小值為______.5、舉出一個生活中應用反比例函數(shù)的例子:______.6、在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點,頂點都是格點的三角形稱為格點三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點三角形,則該圖中所有與Rt△ABC相似的格點三角形中.面積最大的三角形的斜邊長是_____.7、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長=_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結(jié)果保留).2、如圖,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當?shù)闹荛L最小時,點的坐標為_____________;(3)點是第四象限內(nèi)拋物線上的動點,連接和.求面積的最大值及此時點的坐標;(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.3、為了測量大樓頂上(居中)避雷針BC的長度,在地面上點A處測得避雷針底部B和頂部C的仰角分別為55°58′和57°,已知點A與樓底中間部位D的距離約為80米,求避雷針BC的長度.(參考數(shù)據(jù):sin55°58′≈0.83,cos55°58′≈0.56,tan55°58′≈1.48,sin57°≈0.84,tan57°≈1.54)4、如圖,在中,,,,為的中點.動點從點出發(fā)以每秒個單位向終點勻速運動(點不與、、重合),過點作的垂線交折線于點.以、為鄰邊構造矩形.設矩形與重疊部分圖形的面積為,點的運動時間為秒.(1)直接寫出的長(用含的代數(shù)式表示);(2)當點落在的邊上時,求的值;(3)當矩形與重疊部分圖形不是矩形時,求與的函數(shù)關系式,并寫出的取值范圍;(4)沿直線將矩形剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出所有符合條件的的值.5、已知:.(1)求代數(shù)式的值;(2)如果,求的值.6、在平面直角坐標系中,拋物線的頂點為P,且與y軸交于點A,與直線交于點B,C(點B在點C的左側(cè)).(1)求拋物線的頂點P的坐標(用含a的代數(shù)式表示);(2)橫、縱坐標都是整數(shù)的點叫做整點,記拋物線與線段AC圍成的封閉區(qū)域(不含邊界)為“W區(qū)域”.①當時,請直接寫出“W區(qū)域”內(nèi)的整點個數(shù);②當“W區(qū)域”內(nèi)恰有2個整點時,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.-參考答案-一、單選題1、A【解析】【分析】根據(jù)兩邊成比例夾角相等兩三角形相似即可判斷.【詳解】解:由題意:①②④中,∠ABC=∠ADE=∠AFH=135°,又∵,∴,,∴△ABC∽△ADE∽△HFA,故選:A.【考點】本題考查相似三角形的判定,解題的關鍵是理解題意,靈活運用所學知識解決問題.2、D【解析】【分析】根據(jù)題意可得,進而根據(jù)一次函數(shù)圖像的性質(zhì)可得的圖象的大致情況.【詳解】反比例函數(shù)圖象的兩個分支分別位于第一、三象限,∴一次函數(shù)的圖象與y軸交于負半軸,且經(jīng)過第一、三、四象限.觀察選項只有D選項符合.故選D【考點】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)圖像的性質(zhì),根據(jù)已知求得是解題的關鍵.3、C【解析】【分析】直接利用相似圖形的性質(zhì)分別分析得出答案.【詳解】A.任意兩個等邊三角形相似,說法正確;B.有一個銳角是40°的兩個直角三角形相似,說法正確;C.有一個角是30°的兩個等腰三角形相似,30°有可能是頂角或底角,故說法錯誤;D.任意兩個正方形相似,說法正確.故選:C.【考點】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關鍵.4、B【解析】【分析】先求出平移后拋物線的頂點坐標,進而即可得到答案.【詳解】解:∵的頂點坐標為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標為(-2,1),∴所得拋物線對應的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標或掌握“左加右減,上加下減”,是解題的關鍵.5、A【解析】【分析】根據(jù)反比例函數(shù)的定義建立關于m的一元二次方程,再根據(jù)反比例函數(shù)的性質(zhì)解答.【詳解】∵函數(shù)是反比例函數(shù),∴m2-10=-1,解得,m2=9,∴m=±3,當m=3時,m-2>0,圖象位于一、三象限;當m=-3時,m-2<0,圖象位于二、四象限;故選A.【考點】本題考查了反比例函數(shù)的定義和性質(zhì),對于反比例函數(shù)y=(k≠0),(1)k>0,反比例函數(shù)圖象在一、三象限;(2)k<0,反比例函數(shù)圖象在第二、四象限內(nèi).6、A【解析】【分析】先求得AC,再說明△ABE∽△ACD,最后根據(jù)相似三角形的性質(zhì)列方程解答即可.【詳解】解:∵,∴AC=1.2m+12.8m=14m∵標桿和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD∴,即,解得CD=17.5m.故答案為A.【考點】本題考查了相似三角形的應用,正確判定相似三角形并利用相似三角形的性質(zhì)列方程計算是解答本題的關鍵.二、多選題1、BCD【解析】【分析】利用各選項給定的條件,結(jié)合再證明,可得,逐一分析各選項,從而可得答案.【詳解】解:A、而則故A不符合題意;B、與不一定相似,則與不一定相等,不一定平行,故B符合題意;C、,而而不一定相等,故不一定平行,故C符合題意;D、與不一定相似,則與不一定相等,不一定平行,故D符合題意;故選:BCD.【考點】本題考查的是相似三角形的判定與性質(zhì),平行線的判定,掌握兩邊對應成比例且夾角相等的兩個三角形相似是解題的關鍵.2、ABD【解析】【分析】根據(jù)三角形相似的判斷方法判斷即可.【詳解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合題意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合題意;C、,不能判定△AED∽△ABC,不符合題意;D、∵,∠A=∠A,∴△AED∽△ABC,符合題意.故選:ABD.【考點】此題考查了三角形相似的判斷方法,解題的關鍵是熟練掌握三角形相似的判定方法.3、BCD【解析】【分析】根據(jù)比例的定義和性質(zhì),對選項一一分析,即可選出正確答案.【詳解】解:A、兩條線段的比,沒有長度單位,它與所采用的長度單位無關,故選項錯誤,不符合題意;B、,根據(jù)等比性質(zhì),a=2k,b=3k(k>0),故選項正確,符合題意;C、?3a=2b,故選項正確,符合題意;D、?a=b,故選項正確,符合題意.故選:BCD.【考點】本題考查了比例的性質(zhì).在比例里,兩個外項的乘積等于兩個內(nèi)項的乘積.注意兩條線段的比,沒有長度單位,它與所采用的長度單位無關.4、BCD【解析】【分析】A錯誤,假設成立,推出矛盾即可;B正確.想辦法證明即可;C正確.想辦法證明即可;D正確.證明,可得,證明,可得,證明,可得,由此即可解決問題;【詳解】解:A錯誤,假設,則,,,顯然不可能,故A錯誤.B正確.連接.是切線,,,,,,,,,故B正確.C正確.,,,,,,是直徑,,,,,,,點是的外心.故C正確.D正確.連接.,,,,,,,,可得,,,,可得,.故D正確,故選:BCD.【考點】本題考查相似三角形的判定和性質(zhì)、垂徑定理、圓周角定理、切線的性質(zhì)等知識,解題的關鍵是正確現(xiàn)在在相似三角形解決問題,屬于中考選擇題中的壓軸題.5、ABC【解析】【分析】A.當A′為CD中點時,設A'E=AE=x,則DE=8﹣x,根據(jù)勾股定理列出方程求解,可推出A正確;B.當△A'DE三邊之比為3:4:5時,假設A'D=3a,DE=4a,A'E=5a,根據(jù)AD=AE+DE=8,可求得a的值,進一步求得A'D=,即可判斷出B正確;C.過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,證明△AA′D≌△EFM(ASA),即得C正確;D.過點A作AH⊥A'G,垂足為H,連接A'A,AG,先證△AA'D≌△AA'H,可得AD=AH,A'D=A'H,再證Rt△ABG≌Rt△AHG,可得HG=BG,由此證得△A'CG周長=16,即可得出D錯誤.【詳解】解:∵A′為CD中點,正方形ABCD的邊長為8,∴AD=8,A'D=CD=4,∠D=90o,∵正方形沿EF折疊,∴A'E=AE,∴設A'E=AE=x,則DE=8﹣x,∵在Rt△A'DE中,A'D2+DE2=A'E2,∴42+(8﹣x)2=x2,解得:x=5,∴AE=5,DE=3,∴tan∠DA'E=,故A正確;當△A'DE三邊之比為3:4:5時,假設A'D=3a,DE=4a,A'E=5a,則AE=A'E=5a,∵AD=AE+DE=8,∴5a+4a=8,解得:a=,∴A'D=3a=,A'C=CD﹣A'D=8﹣=,故B正確;如圖1,過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,∴EM∥CD,EM=CD=AD,∴∠AEN=∠D=90°,由翻折可知:EF垂直平分AA′,∴∠AQE=90°,∴∠EAN+∠ANE=∠QEN+∠ANE=90°,∴∠EAN=∠QEN,在△AA'D和△EFM中,,∴△AA′D≌△EFM(ASA),∴AA'=EF,故C正確;如圖2,過點A作AH⊥A'G,垂足為H,連接A'A,AG,則∠AHA'=∠AHG=90°,∵折疊,∴∠EA'G=∠EAB=90°,A'E=AE,∵∠D=90o∴∠EAA'+∠DA'A=90o,∴∠AA'G=∠DA'A,∴△AA'D≌△AA'H(AAS),∴AD=AH,A'D=A'H,∵AD=AB,∴AH=AB,在Rt△ABG與Rt△AHG中,,∴Rt△ABG≌Rt△AHG(HL),∴HG=BG,∴△A'CG周長=A'C+A'G+CG=A'C+A'H+HG+CG=A'C+A'D+BG+CG=CD+BC=8+8=16,∴當A'在CD上移動時,△A'CG周長不變,故D錯誤.故選:ABC【考點】本題屬于幾何綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),勾股定理,全等三角形的判定及性質(zhì),熟練掌握相關圖形的性質(zhì)是解決本題的關鍵.6、BCD【解析】【分析】先判斷格中所畫格點三角形為直角三角形,利用兩組對應邊的比相等且夾角對應相等的兩個三角形相似,否則不相似,對各選項進行判斷.【詳解】解:由圖知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A選項中,三條線段的長為,因為,此三角形為直角三角形,長直角邊與短直角邊的比為2,所以A選項的方格中所畫格點三角形(陰影部分)與△ABC相似,不符合題意;B選項中,長直角邊與短直角邊的比為3,所以B中格點三角形與△ABC不相似,符合題意;C選項中,三條線段的長為√,因為,此三角形為直角三角形,兩直角邊的比為1,所以C選項的方格中所畫格點三角形(陰影部分)與△ABC不相似,符合題意;D選項中,三角形的兩直角邊的比為1:1.所以D中格點三角形與△ABC不相似,符合題意,故選:BCD.【考點】本題考查相似三角形的判定,能在格點中表示各個線段的長度和掌握相似三角形的判定定理是解決此題的關鍵.7、BCD【解析】【分析】根據(jù)函數(shù)與點的關系,一元二次方程根的判別式,不等式的性質(zhì),逐一計算判斷即可.【詳解】∵拋物線(是常數(shù),)經(jīng)過點(-1,-1),,當時,與其對應的函數(shù)值,∴c=1>0,a-b+c=-1,4a-2b+c>1,∴a-b=-2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,故A錯誤;∵b=a+2,a>2,c=1,,故B正確;∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,即,故C正確;∵,∴△==>0,∴有兩個不等的實數(shù)根,故D正確.故選:BCD.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,不等式的基本性質(zhì),熟練掌握二次函數(shù)的性質(zhì),靈活使用根的判別式,準確掌握不等式的基本性質(zhì)是解題的關鍵.三、填空題1、
S=-3x2+24x
≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關系式,并根據(jù)墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.2、1或【解析】【分析】先運用根的判別式求得k的取值范圍,進而確定k的值,得到拋物線的解析式,再根據(jù)折疊得到新圖像的解析式,可求出函數(shù)圖象與x軸的交點坐標,畫出函數(shù)圖象,可發(fā)現(xiàn),若直線與新函數(shù)有3個交點,可以有兩種情況:①過交點(-1,0),根據(jù)待定系數(shù)法可得m的值;②不過點(一1,0),與相切時,根據(jù)判別式解答即可.【詳解】解:∵函數(shù)與x軸有兩個交點,∴,解得,當k取最小整數(shù)時,,∴拋物線為,將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,所以新圖象的解析式為(或)
:①因為為的,所以它的圖象從左到右是上升的,當它與新圖象有3個交點時它一定過,把代入得所以,②與相切時,圖象有三個交點,,,解得.故答案為:1或.【考點】本題主要考查了二次函數(shù)圖象與幾何變換、待定系數(shù)法求函數(shù)解析式等知識點,掌握分類討論和直線與拋物線相切時判別式等于零是解答本題的關鍵.3、2【解析】【分析】根據(jù)正切定義得到,則可設AB=x,BC=2x,利用勾股定理計算出AC=x,所以x=,解得x=1,然后計算2x即可得到BC的長.【詳解】解:如圖,∵∠B=90°,∴,設AB=x,則BC=2x,∴,∴x=,解得x=1,∴BC=2x=2.故答案為:2.【考點】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.4、【解析】【分析】先將函數(shù)解析式化為頂點式,再根據(jù)函數(shù)的性質(zhì)解答.【詳解】解:,∵a=1>0,∴當x=-2時,二次函數(shù)有最小值-4,故答案為:-4.【考點】此題考查將二次函數(shù)一般式化為頂點式,函數(shù)的性質(zhì),熟練轉(zhuǎn)化函數(shù)解析式的形式及掌握確定最值的方法是解題的關鍵.5、路程s一定,速度v與時間t之間的關系(答案不唯一).【解析】【分析】利用反比例函數(shù)的定義并結(jié)合生活中的實例來解答此題即可【詳解】根據(jù)路程=速度時間,速度v則可以用反比例函數(shù)來表示.故答案可以為路程s一定,速度v與時間t之間的關系(答案不唯一).【考點】本題主要考查了反比例函數(shù)的定義形式如(k為常數(shù),)的函數(shù)稱為反比例函數(shù).其中x是自變量,y是函數(shù),自變量x的取值范圍是不等于0的一切實數(shù).6、5【解析】【分析】根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為1:2,以及6×6網(wǎng)格圖形中,最長線段為6,進行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網(wǎng)格圖形中,最長線段為6,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點】本題考查了作圖-應用與設計、相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關鍵是學會利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.7、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長,即為EC的長.【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關性質(zhì)與定理是解題的關鍵.四、解答題1、(1)見解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE是等邊三角形即可解決問題.【詳解】(1)證明:連接OD,如圖,∵BD為∠ABC平分線,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切線.(2)過O作OG⊥BC,連接OE,則四邊形ODCG為矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,則△OBE是等邊三角形,∴陰影部分面積為﹣×2×=.【考點】本題考查切線的判定和性質(zhì),等邊三角形的判定和性質(zhì),思想的面積公式等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.2、(1);(2);(3)面積最大為,點坐標為;(4)存在點,使以點、、、為頂點的四邊形是平行四邊形,,點坐標為,,.【解析】【分析】(1)將點,代入即可求解;(2)BC與對稱軸的交點即為符合條件的點,據(jù)此可解;(3)過點作軸于點,交直線與點,當EF最大時面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對邊平行且相等的性質(zhì)可以得到存在點N使得以B,C,M,N為頂點的四邊形是平行四邊形.分三種情況討論.【詳解】解:(1)拋物線過點,解得:拋物線解析式為.(2)點,∴拋物線對稱軸為直線點在直線上,點,關于直線對稱,當點、、在同一直線上時,最?。畳佄锞€解析式為,∴C(0,-6),設直線解析式為,解得:直線:,,故答案為:.(3)過點作軸于點,交直線與點,設,則,當時,面積最大為,此時點坐標為.(4)存在點,使以點、、、為頂點的四邊形是平行四邊形.設N(x,y),M(,m),①四邊形CMNB是平行四邊形時,CM∥NB,CB∥MN,,∴x=,∴y==,∴N(,);②四邊形CNBM是平行四邊形時,CN∥BM,CM∥BN,,∴x=,∴y==∴N(,);③四邊形CNMB是平行四邊形時,CB∥MN,NC∥BM,,∴x=,∴y==∴N(,);點坐標為(,),(,),(,).【考點】本題考查二次函數(shù)與幾何圖形的綜合題,熟練掌握二次函數(shù)的性質(zhì),靈活運用數(shù)形結(jié)合思想得到坐標之間的關系是解題的關鍵.3、避雷針BC的長度為4.8米.【解析】【分析】解直角三角形求出CD,BD,根據(jù)BC=CD-BD求解即可.【詳解】解:在Rt△ABD中,∵,∴1.48=,∵AD=80米,∴BD=118.4(米),在Rt△CAD中,∵tan∠CAD=,∴1.54=,∴CD=123.2(米),∴BC=CD-BD=4.8(米)答:避雷針BC的長度為4.8米.【考點】本題考查解直角三角形的應用,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.4、(1),;(2);(3);(4)或.【解析】【分析】(1)根據(jù)P點的運動速度和BD的長度即可出結(jié)果;(2)畫出圖象,根據(jù)三角形的相似求出各個線段長,即可解決;(3)分情況討論,矩形與重疊部分面積即為矩形面積減去△ABC外部的小三角形面積,通過三角函數(shù)計算出各邊長求面積即可;(4)要想使被直線分割成的兩部分能拼成不重疊且無縫隙的圖形恰好是三角形,則需要被分割的是兩個至少有一條相等邊長的直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年歷史文化常識專業(yè)知識考試題
- 2025下半年廣東省鶴山市招聘醫(yī)療衛(wèi)生專業(yè)技術人員47人備考題庫附答案詳解
- 2025至2030車載空氣凈化器市場消費行為及品牌競爭策略研究報告
- 2026年上半年云南輕紡職業(yè)學院招聘人員(10人)考試備考題庫及答案解析
- 2026安徽亳州市蒙城縣直幼兒園面向農(nóng)村學校選調(diào)教師55人備考題庫及1套參考答案詳解
- 2026年建筑設計與結(jié)構知識練習題
- 2026年農(nóng)業(yè)科技推廣與種植技術培訓題庫
- 2026廣東佛山市季華實驗室精密驅(qū)動與智能控制技術研究組招聘1人備考題庫及1套完整答案詳解
- 2026四川西部戰(zhàn)區(qū)總醫(yī)院住院醫(yī)師規(guī)范化培訓招收備考題庫及一套完整答案詳解
- 電線電纜知識試題及答案
- 靜脈給藥的安全管理
- 2024-2025學年度高一英語下學期期中試卷(北師大版含答案)
- 銀行從業(yè)者觀《榜樣》心得體會
- 農(nóng)村年底活動方案
- 2024屆山東省威海市高三二模數(shù)學試題(解析版)
- 設備管理獎罰管理制度
- LINE6效果器HD300中文說明書
- 2025年航運行業(yè)安全生產(chǎn)費用提取和使用計劃
- 納米纖維凝膠隔熱材料的應用研究進展
- 蟹苗買賣合同協(xié)議
- 2025年社區(qū)養(yǎng)老服務補貼政策及申領方法
評論
0/150
提交評論