版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川瀘縣四中7年級數(shù)學下冊第四章三角形必考點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、以長為15cm,12cm,8cm、5cm的四條線段中的三條線段為邊,可以畫出三角形的個數(shù)是()A.1個 B.2個 C.3個 D.4個2、如圖,∠BAD=90°,AC平分∠BAD,CB=CD,則∠B與∠ADC滿足的數(shù)量關系為()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180° D.∠B+∠ADC=90°3、以下列長度的三條線段為邊,能組成三角形的是()A. B. C. D.4、如圖,直線EF經(jīng)過AC的中點O,交AB于點E,交CD于點F,下列不能使△AOE≌△COF的條件為()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF5、如圖,在△ABC與△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF于點D,連接EB.下列結論:①∠FAC=40°;②AF=AC;③∠EFB=40°;④AD=AC,正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個6、如圖,已知為的外角,,,那么的度數(shù)是()A.30° B.40° C.50° D.60°7、根據(jù)下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,8、已知線段AB=9cm,AC=5cm,下面有四個說法:①線段BC長可能為4cm;②線段BC長可能為14cm;③線段BC長不可能為3cm;④線段BC長可能為9cm.所有正確說法的序號是()A.①② B.③④ C.①②④ D.①②③④9、如圖,平分,,連接,并延長,分別交,于點,,則圖中共有全等三角形的組數(shù)為()A. B. C. D.10、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,△ABC是一個等腰直角三角形,∠BAC=90°,BC分別與AF、AG相交于點D、E.不添加輔助線,使△ACE與△ABD全等,你所添加的條件是____.(填一個即可)2、如圖,ABDC,ADBC,AC與BD交于點O,EF經(jīng)過點O,與AD、BC分別交于點E和F,則圖中共有___對全等三角形.3、如圖,在中,D、E分別為AC、BC邊上一點,AE與BD交于點F.已知,,且的面積為60平方厘米,則的面積為______平方厘米;如果把“”改為“”其余條件不變,則的面積為______平方厘米(用含n的代數(shù)式表示).4、如圖,在△ABC中,∠C=90°,AD是BC邊上的中線,交BC于點D,CD=5cm,AC=12cm,則△ABD的面積是__________cm2.5、一個等腰三角形的一邊長為2,另一邊長為9,則它的周長是________________.6、如圖,A,B在一水池的兩側,,,AC,BD交于點E,,若,則水池寬______m.7、如圖,在中,,一條線段,P,Q兩點分別在線段和的垂線上移動,若以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,則的長為_________.8、已知a,b,c是△ABC的三邊,化簡:|a+b-c|+|b-a-c|=________.9、如圖,某同學把一塊三角形的玻璃打碎成了三片,現(xiàn)在他要到玻璃店去配一塊完全一樣形狀的玻璃,那么最省事的辦法是帶____(填序號)去配,這樣做的科學依據(jù)是_______.10、如圖,已知,,,則______°.三、解答題(6小題,每小題10分,共計60分)1、如圖,點A,B,C,D在一條直線上,,,.求證:.2、如圖,點D在AB上,E在AC上,AB=AC,∠B=∠C,求證:AD=AE.3、如圖,在△ABC中,D是邊AB上一點,E是邊AC的中點,過點C作交DE的延長線于點F.(1)求證:△ADE≌△CFE;(2)若AB=AC,CE=5,CF=7,求DB的長.4、如圖1,在長方形ABCD中,AB=CD=6cm,BC=10cm,點P從點B出發(fā),以2cm/s的速度沿BC向點C運動,設點P的運動時間為ts,且t≤5(1)PC=cm(用含t的代數(shù)式表示)(2)如圖2,當點P從點B開始運動時,點Q從點C出發(fā),以cm/s的速度沿CD向點D運動,是否存在這樣的v值,使得以A﹑B﹑P為頂點的三角形與以P﹑Q﹑C為頂點的三角形全等?若存在,請求出的值;若不存在,請說明理由.5、在復習課上,老師布置了一道思考題:如圖所示,點M,N分別在等邊的邊上,且,,交于點Q.求證:.同學們利用有關知識完成了解答后,老師又提出了下列問題:(1)若將題中“”與“”的位置交換,得到的是否仍是真命題?請你給出答案并說明理由.(2)若將題中的點M,N分別移動到的延長線上,是否仍能得到?請你畫出圖形,給出答案并說明理由.6、已知,如圖,三角形ABC是等腰直角三角形,∠ACB=90°,F(xiàn)是AB的中點,直線l經(jīng)過點C,分別過點A、B作l的垂線,即AD⊥CE,BE⊥CE,(1)如圖1,當CE位于點F的右側時,求證:△ADC≌△CEB;(2)如圖2,當CE位于點F的左側時,求證:ED=BE﹣AD;(3)如圖3,當CE在△ABC的外部時,試猜想ED、AD、BE之間的數(shù)量關系,并證明你的猜想.-參考答案-一、單選題1、C【分析】從4條線段里任取3條線段組合,可有4種情況,看哪種情況不符合三角形三邊關系,舍去即可.【詳解】解:首先可以組合為15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根據(jù)三角形的三邊關系,發(fā)現(xiàn)其中的12cm,8cm、5cm不符合,則可以畫出的三角形有3個.故選:C.【點睛】本題考查了三角形的三邊關系:即任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.這里一定要首先把所有的情況組合后,再看是否符合三角形的三邊關系.2、C【分析】由題意在射線AD上截取AE=AB,連接CE,根據(jù)SAS不難證得△ABC≌△AEC,從而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,證得∠B=∠CDE,即可得出結果.【詳解】解:在射線AD上截取AE=AB,連接CE,如圖所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC與△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故選:C.【點睛】本題主要考查全等三角形的判定與性質,解答的關鍵是作出適當?shù)妮o助線AE,CE.3、D【分析】根據(jù)三角形的三邊關系,即可求解.【詳解】解:A、因為,所以不能構成三角形,故本選項不符合題意;B、因為,所以不能構成三角形,故本選項不符合題意;C、因為,所以不能構成三角形,故本選項不符合題意;D、因為,所以能構成三角形,故本選項符合題意;故選:D【點睛】本題主要考查了三角形的三邊關系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關鍵.4、C【分析】根據(jù)全等三角形的判定逐項判斷即可.【詳解】解:∵直線EF經(jīng)過AC的中點O,∴OA=OC,A、∵OA=OC,∠A=∠C,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項不符合題意;B、∵AB∥CD,∴∠A=∠C,又∵OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項不符合題意;C、由OA=OC,AE=CF,∠AOE=∠COF,不能證明△AOE≌△COF,符合題意;D、∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),此選項不符合題意,故選:C.【點睛】本題考查全等三角形的判定、對頂角相等,熟練掌握全等三角形的判定條件是解答的關鍵.5、C【分析】由“SAS”可證△ABC≌△AEF,由全等三角形的性質依次判斷可求解.【詳解】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正確,∴∠BAE=∠FAC=40°,故①正確,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=40°,故③正確,無法證明AD=AC,故④錯誤,故選:C.【點睛】本題考查全等三角形的判定與性質,是重要考點,掌握相關知識是解題關鍵.6、B【分析】根據(jù)三角形的外角性質解答即可.【詳解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD?∠B=60°?20°=40°,故選:B.【點睛】此題考查三角形的外角性質,關鍵是根據(jù)三角形外角性質解答.7、B【分析】根據(jù)三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關鍵.8、D【分析】分三種情況:C在線段AB上,C在線段BA的延長線上以及C不在直線AB上結合線段的和差以及三角形三邊的關系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點睛】此題主要考查了三角形三邊關系,線段之間的關系,正確分類討論是解題關鍵.9、C【分析】求出∠BAD=∠CAD,根據(jù)SAS推出△ADB≌△ADC,根據(jù)全等三角形的性質得出∠B=∠C,∠ADB=∠ADC,求出∠ADE=∠ADF,根據(jù)ASA推出△AED≌△AFD,根據(jù)全等三角形的性質得出AE=AF,根據(jù)SAS推出△ABF≌△ACE,根據(jù)AAS推出△EDB≌△FDC即可.【詳解】解:圖中全等三角形的對數(shù)有4對,有△ADB≌△ADC,△ABF≌△ACE,△AED≌△AFD,△EDB≌△FDC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ADB和△ADC中∴△ADB≌△ADC(SAS),∴∠B=∠C,∠ADB=∠ADC,∵∠EDB=∠FDC,∴∠ADB?∠EDB=∠ADC?∠FDC,∴∠ADE=∠ADF,在△AED和△AFD中∴△AED≌△AFD(ASA),∴AE=AF,在△ABF和△ACE中∴△ABF≌△ACE(SAS),∵AB=AC,AE=AF,∴BE=CF,在△EDB和△FDC中∴△EDB≌△FDC(AAS),故選:C.【點睛】本題考查了全等三角形的判定定理和性質定理,能綜合運用定理進行推理是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應邊相等,對應角相等.10、D【分析】根據(jù)三角形三邊關系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點睛】本題考查了構成三角形的條件,熟練掌握三角形三邊關系是解題的關鍵.二、填空題1、CD=BE(答案不唯一)【分析】△ABC是一個等腰直角三角形,可知,,使△ACE與△ABD全等,只需填加一組對應角相等或的另一組邊相等即可.【詳解】解:①若所添加的條件是CD=BE,∵CD=BE,∴,∵△ABC是一個等腰直角三角形,∴,,在△ACE和△ABD中,,∴(SAS)故答案為:CD=BE,(答案不唯一)【點睛】本題主要考查了全等三角形的判定,掌握全等三角形判定方法并靈活運用是解題關鍵.2、6【分析】根據(jù)平行線的性質得出∠DAC=∠BCA,∠DCA=∠BAC,根據(jù)全等三角形的判定定理ASA可以推出△ABC≌△CDA,△ABD≌△CDB,根據(jù)全等三角形的性質得出AD=CB,AB=CD根據(jù)全等三角形的判定定理AAS推出△AOB≌△COD,△AOD≌△COB,根據(jù)全等三角形的性質定理得出AO=CO,BO=DO,根據(jù)全等三角形的判定定理ASA推出△AOE≌△COF,△DOE≌△BOF即可.【詳解】解:∵ABDC,ADBC,∴∠DAC=∠BCA,∠DCA=∠BAC,在△ABC和△CDA中,∴△ABC≌△CDA(ASA),∴AD=CB,AB=CD,同理△ABD≌△CDB,在△AOB和△COD中,∴△AOB≌△COD(AAS),同理△AOD≌△COB,∴AO=CO,BO=DO,在△AOE和△COF中,∴△AOE≌△COF同理△DOE≌△BOF.【點睛】本題考查了全等三角形的判定定理和性質定理,平行線的性質等知識點,能熟記全等三角形的判定定理和性質定理是解此題的關鍵,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS兩直角三角形全等還有HL等,②全等三角形的對應邊相等,對應角相等.3、6【分析】連接CF,依據(jù)AD=CD,BE=2CE,且△ABC的面積為60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,設S△ADF=S△CDF=x,依據(jù)S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面積為6平方厘米;當BE=nCE時,運用同樣的方法即可得到△ADF的面積.【詳解】如圖,連接CF,∵AD=CD,BE=2CE,且△ABC的面積為60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,設S△ADF=S△CDF=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面積為6平方厘米;當BE=nCE時,S△AEC=,設S△AFD=S△CFD=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面積為平方厘米;故答案為:【點睛】本題主要考查了三角形的面積的計算,解決問題的關鍵是作輔助線,根據(jù)三角形之間的面積關系得出結論.解題時注意:三角形的中線將三角形分成面積相等的兩部分.4、30【分析】根據(jù)三角形的面積公式求出△ACD的面積,利用三角形中線的性質即可求解.【詳解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面積為(cm2),∵AD是BC邊上的中線,∴△ACD的面積=△ABD的面積為(cm2),故答案為:30.【點睛】本題考查了三角形的面積和三角形中線的性質,關鍵是根據(jù)三角形的中線把三角形分成面積相等的兩部分解答.5、20【分析】題目給出等腰三角形有兩條邊長為2和9,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】解:分兩種情況:當腰為2時,2+2<9,所以不能構成三角形;當腰為9時,2+9>9,所以能構成三角形,周長是:2+9+9=20.故答案為:20.【點睛】本題考查了等腰三角形的性質和三角形的三邊關系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答,這點非常重要,也是解題的關鍵.6、80【分析】根據(jù)“”證明即可得出.【詳解】解:∵,,∴,在和中,,∴,∵,∴,故答案為:.【點睛】本題考查了全等三角形的實際應用,熟練掌握全等三角形的判定定理以及性質定理是解本題的關鍵.7、6cm或12cm【分析】先根據(jù)題意得到∠BCA=∠PAQ=90°,則以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,由此利用全等三角形的性質求解即可.【詳解】解:∵AX是AC的垂線,∴∠BCA=∠PAQ=90°,∴以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,當△ACB≌△QAP,∴;當△ACB≌△PAQ,∴,故答案為:6cm或12cm.【點睛】本題主要考查了全等三角形的性質,熟知全等三角形的性質是解題的關鍵.8、【分析】首先利用三角形的三邊關系得出,然后根據(jù)求絕對值的法則進行化簡即可.【詳解】解:∵是的三條邊,∴,∴=.故答案為:.【點睛】熟悉三角形的三邊關系和求絕對值的法則,是解題的關鍵,注意,去絕對值后,要先添加括號,再去括號,這樣不容易出錯.|a+b-c|+|b-a-c|9、③ASA【分析】由題意已知三角形破損部分的邊角,得到原來三角形的邊角,根據(jù)三角形全等的判定方法進行分析即可.【詳解】解:第一塊和第二塊只保留了原三角形的一個角和部分邊,根據(jù)這兩塊中的任一塊均不能配一塊與原來完全一樣的;第三塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據(jù)ASA來配一塊一樣的玻璃.故答案為:③;ASA.【點睛】本題主要考查全等三角形的判定方法的實際應用,要求學生將所學的知識運用于實際生活中,要認真觀察圖形,根據(jù)已知選擇方法.10、59【分析】如圖,過作證明證明再利用三角形的外角的性質求解從而可得答案.【詳解】解:如圖,過作,而,,故答案為:【點睛】本題考查的是平行線的性質,平行公理的應用,三角形的外角的性質,過作再證明是解本題的關鍵.三、解答題1、見解析【分析】根據(jù)平行線的性質得出,運用“角角邊”證明△AEB≌△CFD即可.【詳解】證明:∵,∴,在△AEB和△CFD中,∴△AEB≌△CFD,∴.【點睛】本題考查了全等三角形的判定與性質,解題關鍵是熟練運用全等三角形的判定定理進行證明.2、見解析【分析】根據(jù)全等三角形的判定定理ASA可以證得△ACD≌△ABE,然后由“全等三角形的對應邊相等”即可證得結論.【詳解】證明:在△ABE與△ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的對應邊相等).【點睛】本題考查了全等三角形的判定與性質.在應用全等三角形的判定時,要注意三角形間的公共邊和公共角.3、(1)見解析;(2)DB=3.【分析】(1)先證明再證明從而可得結論;(2)利用全等三角形的性質證明再求解從而可得答案.【詳解】證明:(1)E是邊AC的中點,△ADE≌△CFE;(2)△ADE≌△CFE,CE=5,CF=7,AB=AC,【點睛】本題考查的是全等三角形的判定與性質,掌握“利用證明三角形全等及利用全等三角形的性質求解線段的長度”是解本題的關鍵.4、(1)(10﹣2t);(2)當v=1或v=2.4時,△ABP和△PCQ全等.【分析】(1)根據(jù)題意求出BP,然后根據(jù)PC=BC-BP計算即可;(2)分△ABP≌△QCP和△ABP≌△PCQ兩種情況,根據(jù)全等三角形的性質解答即可.【詳解】解:(1)∵點P的速度是2cm/s,∴ts后BP=2tcm,∴PC=BC?BP=(10?2t)cm,故答案為:(10﹣2t);(2)由題意得:,∠B=∠C=90°,∴只存在△ABP≌△QCP和△ABP≌△PCQ兩種情況,當△ABP≌△PCQ時,∴AB=PC,BP=CQ,∴10?2t=6,2t=vt,解得,t=2,v=2,當△ABP≌△QCP時,∴AB=QC,BP=CP,∴2t=10-2t,vt=6,解得,t=2.5,v=2.4,∴綜上所述,當v=1或v=2.4時,△ABP和△PCQ全等.【點睛】本題考查了全等三角形的性質,解題的關鍵在于能夠利用分類討論的思想求解.5、(1)仍是真命題,證明見解析(2)仍能得到,作圖和證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中醫(yī)護理學基礎課件
- 心電圖護理中的虛擬現(xiàn)實技術應用
- 護理管理與實踐領導力
- 痔瘡護理中的飲食禁忌
- 土壤養(yǎng)分傳感技術
- 2025年電池管理系統(tǒng)通信容錯機制
- 在線商務咨詢行業(yè)的競爭格局
- 幾何基礎導數(shù)題目及答案
- 2026 年中職經(jīng)濟與管理基礎(經(jīng)濟學原理)試題及答案
- 辦公隔斷裝修合同協(xié)議2025年
- 甲醇安全培訓試題及答案
- 高空作業(yè)繩索安全操作規(guī)范
- 2025上海靜安區(qū)區(qū)管企業(yè)招聘中層管理人員17人筆試備考試卷附答案解析
- 急診用藥錯誤的FMEA分析與預防策略
- 2025年瓷磚及石材培訓試題及答案
- 2026年供水公司安全三級教育培訓管理制度
- 2025年及未來5年市場數(shù)據(jù)中國3-丁烯-1-醇行業(yè)市場深度分析及發(fā)展前景預測報告
- (一模)六盤水市2026屆高三高考適應性考試(一)英語試卷(含答案詳解)
- 2025年新沂市教育局直屬學校招聘真題
- 2025秋期版國開電大本科《管理英語4》一平臺綜合測試形考任務在線形考試題及答案
- 第一單元第1課 情感的抒發(fā)與理念的表達 教案 2024-2025學年人教版初中美術八年級下冊
評論
0/150
提交評論