難點詳解人教版8年級數(shù)學(xué)上冊《全等三角形》綜合練習(xí)練習(xí)題_第1頁
難點詳解人教版8年級數(shù)學(xué)上冊《全等三角形》綜合練習(xí)練習(xí)題_第2頁
難點詳解人教版8年級數(shù)學(xué)上冊《全等三角形》綜合練習(xí)練習(xí)題_第3頁
難點詳解人教版8年級數(shù)學(xué)上冊《全等三角形》綜合練習(xí)練習(xí)題_第4頁
難點詳解人教版8年級數(shù)學(xué)上冊《全等三角形》綜合練習(xí)練習(xí)題_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》綜合練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△ABC和△DEF中,已知AB=DE,BC=EF,根據(jù)(SAS)判定△ABC≌△DEF,還需的條件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三個均可以2、如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F(xiàn),若BE=3,AF=5,則AC的長為(

)A. B. C.10 D.83、如圖,在中,是邊上的高,平分,交于點,若,,則的面積等于()A.36 B.48 C.60 D.724、下列說法正確的是(

)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點所表示的數(shù)為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角”;⑤如圖,在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點.A.1 B.2 C.3 D.45、如圖給出了四組三角形,其中全等的三角形有(

)組.A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、已知:如圖,是上一點,平分,,若,則________.(用的代數(shù)式表示)2、如圖,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分線交于點E,則∠ABE=_____°.3、在△ABC中,∠C=90°,AD是△ABC的角平分線,BC=6、AC=8、AB=10,則點D到AB的距離為_______.4、如圖,AD,BE是的兩條高線,只需添加一個條件即可證明(不添加其它字母及輔助線),這個條件可以是______(寫出一個即可).5、如圖,BE交AC于點M,交CF于點D,AB交CF于點N,,給出的下列五個結(jié)論中正確結(jié)論的序號為.①;②;③;④;⑤.三、解答題(5小題,每小題10分,共計50分)1、如圖,,,垂足分別為與相交于點,.(1)求證:;(2)在不添加任何輔助線的情況下,請直接寫出圖中四對全等的三角形..2、【問題解決】(1)已知△ABC中,AB=AC,D,A,E三點都在直線l上,且有∠BDA=∠AEC=∠BAC.如圖①,當(dāng)∠BAC=90°時,線段DE,BD,CE的數(shù)量關(guān)系為:______________;【類比探究】(2)如圖②,在(1)的條件下,當(dāng)0°<∠BAC<180°時,線段DE,BD,CE的數(shù)量關(guān)系是否變化,若不變,請證明:若變化,寫出它們的關(guān)系式;【拓展應(yīng)用】(3)如圖③,AC=BC,∠ACB=90°,點C的坐標(biāo)為(-2,0),點B的坐標(biāo)為(1,2),請求出點A的坐標(biāo).3、如圖,點E在邊AC上,已知AB=DC,∠A=∠D,BC∥DE,求證:DE=AE+BC.4、如圖,在中,,點在邊上,使,過點作,分別交于點,交的延長線于點.求證:.5、如圖,在△ABC中,AB=AC,D是BC的中點,E,F(xiàn)分別是AB,AC上的點,且AE=AF.求證:DE=DF.-參考答案-一、單選題1、B【解析】【分析】根據(jù)三角形全等的判定中的SAS,即兩邊夾角.已知兩條邊相等,只需要它們的夾角相等即可.【詳解】要使兩三角形全等,已知AB=DE,BC=EF,要用SAS判斷,還差夾角,即∠B=∠E.故選:B.【考點】本題考查了三角形全等的判定方法.三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主.2、A【解析】【分析】連接AE,由線段垂直平分線的性質(zhì)得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結(jié)AE,設(shè)AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因為EF為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考點】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關(guān)鍵.3、B【解析】【分析】作交于點,然后根據(jù)角平分線的性質(zhì),可以得到,再根據(jù)三角形的面積公式,即可求得的面積.【詳解】解:作交于點,∵是邊上的高,∴,∵平分,∴∵,,∴.故選:B.【考點】本題考查了三角形的面積和角平分線性質(zhì).理解和掌握角的平分線的性質(zhì)定理是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實數(shù)的大小比較,可判斷②;根據(jù)點在數(shù)軸上所對應(yīng)的實數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點所表示的數(shù)為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點,故本小題正確.故選B【考點】本題主要考查近似數(shù)的精確度定義,實數(shù)的大小比較,點在數(shù)軸上所對應(yīng)的實數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識點,是解題的關(guān)鍵.5、D【解析】【詳解】分析:根據(jù)全等三角形的判定解答即可.詳解:圖A可以利用AAS證明全等,圖B可以利用SAS證明全等,圖C可以利用SAS證明全等,圖D可以利用ASA證明全等..其中全等的三角形有4組,故選D.點睛:此題考查全等三角形的判定的應(yīng)用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,題目比較典型,難度適中.二、填空題1、【解析】【分析】過點D分別作DE⊥AB,DF⊥AC,根據(jù)角平分線的性質(zhì)得到DE=DF,根據(jù)表示出DE的長度,進而得到DF的長度,然后即可求出的值.【詳解】如圖,過點D分別作DE⊥AB,DF⊥AC,∵平分,∴DE=DF,∵,∴,∴∴,故答案為:.【考點】此題考查了角平分線的性質(zhì)定理,三角形面積的表示方法,解題的關(guān)鍵是根據(jù)題意正確作出輔助線.2、23.5或【解析】【分析】首先作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,再利用角平分線的性質(zhì)得出BE為∠ABC的角平分線,即可求解.【詳解】解:作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,如圖所示,∵AE、CE是∠DAC和∠ACF的平分線,∴EM=EO,EO=EN,∴EM=EN,∴BE是∠ABC的角平分線,∴∠ABE=∠ABC=23.5°.故答案為:23.5.【考點】此題考查角平分線的性質(zhì):在角的內(nèi)部,到角的兩邊距離相等的點在角的平分線上,反之也是成立的.解題關(guān)鍵是利用角平分線的判定定理.3、或【解析】【分析】作DE⊥AB于E,如圖,先根據(jù)勾股定理計算出BC=8,再利用角平分線的性質(zhì)得到DE=DC,設(shè)DE=DC=x,利用面積法得到10x=6(8-x),然后解方程即可.【詳解】解:作DE⊥AB于E,如圖,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設(shè)DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=8(6-x),解得x=,即點D到AB邊的距離為.故答案為:.【考點】本題考查了角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等,由已知能夠注意到D到AB的距離即為DE長是解決的關(guān)鍵.4、(答案不唯一)【解析】【分析】根據(jù)已知條件可知,故只要添加一條邊相等即可證明.【詳解】解:添加,AD,BE是的兩條高線,,在與中,.故答案為:(答案不唯一).【考點】本題考查了三角形全等的判定,掌握三角形全等的判定是解題的關(guān)鍵.5、①;②;③;⑤【解析】【分析】①先證明△ABE≌△ACF,然后根據(jù)全等三角形的性質(zhì)即可判定;②利用全等三角形的性質(zhì)即可判定;③根據(jù)ASA即可證明三角形全等;④無法證明該結(jié)論;⑤根據(jù)ASA證明三角形全等即可.【詳解】解:在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,BE=CF,故②正確,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠1=∠2,故①正確,∵△ABE≌△ACF,∴AB=AC,在△CAN和△BAM中,,∴△CAN≌△BAM(ASA),故③正確,CD=DN不能證明成立,故④錯誤在△AFN和△AEM中,∴△AFN≌△AEM(ASA),故⑤正確.結(jié)論中正確結(jié)論的序號為①;②;③;⑤.故答案為①;②;③;⑤.【考點】本題主要考查了三角形全等的判定和性質(zhì),解題的關(guān)鍵是正確尋找全等三角形全等的條件.三、解答題1、(1)見解析;(2),,,【解析】【分析】(1)根據(jù)垂直的定義得出∠BDF=∠CEF=90°,根據(jù)AAS可以推出△BDF≌△CEF,根據(jù)全等三角形的性質(zhì)得出即可;(2)根據(jù)全等三角形的性質(zhì)得出∠B=∠C,BD=CE,DF=EF,求出AB=AC,再根據(jù)全等三角形的判定定理推出△ADF≌△AEF,△ABF≌△ACF,△ACD≌△ABE.【詳解】證明:,在和中(AAS)

⑵,,,理由是:由(1)知:△BFD≌△CFE,所以DF=EF,∠B=∠C,BD=CE,根據(jù)HL可以推出△ADF≌△AEF,所以AD=AE,∵BD=CE,∴AB=AC,根據(jù)SAS可以推出△ABF≌△ACF,根據(jù)HL可以推出△ACD≌△ABE.【考點】本題考查了全等三角形的性質(zhì)和判定,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.2、(1)DE=BD+CE;(2)DE=BD+CE的數(shù)量關(guān)系不變,理由見解析;(3)(﹣4,3)【解析】【分析】(1)證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AD=CE,BD=AE,結(jié)合圖形證明結(jié)論;(2)根據(jù)三角形的外角性質(zhì)得到∠ABD=∠CAE,證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)解答;(3)過點A作AM⊥x軸于點M,過點B作BN⊥x軸于點N,根據(jù)(1)的結(jié)論得到△ACM≌△BCN,根據(jù)全等三角形的性質(zhì)解答即可.【詳解】解:(1)∵∠BAC=90°,∴∠BDA=∠AEC=∠BAC=90°,∴∠ABD+∠BAD=90°,∠CAE+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案為:DE=BD+CE;(2)DE=BD+CE的數(shù)量關(guān)系不變,理由如下:∵∠BAE是△ABD的一個外角,∴∠BAE=∠ADB+∠ABD,∵∠BDA=∠BAC,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE;(3)過點A作AM⊥x軸于點M,過點B作BN⊥x軸于點N,∵點C的坐標(biāo)為(﹣2,0),點B的坐標(biāo)為(1,2),∴OC=2,ON=1,BN=2,∴CN=3,由(1)可知,△ACM≌△CBN,∴AM=CN=3,CM=BN=2,∴OM=OC+CM=4,∴點A的坐標(biāo)為(﹣4,3).【考點】本題考查的是三角形全等的判定和性質(zhì)、坐標(biāo)與圖形性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.3、見解析【解析】【分析】根據(jù)AAS證明△ABC≌△DCE,得到DE=AC,BC=EC,再進行線段的代換即可求解.【詳解】解:證明:∵BC∥DE,∴∠ACB=∠DEC,在△ABC和△DCE中,∴△ABC≌△DCE(AAS),∴DE=AC,BC=EC,∴DE=AC=AE+EC=AE+BC.【考點】本題考查了全等三角形的判定與性質(zhì),熟知全等三角形的判定定理并根據(jù)題意靈活應(yīng)用是解題關(guān)鍵.4、詳見解析【解析】【分析】根據(jù)得出,再根據(jù),故,證明≌即可證明.【詳解】∵,∴.∵,∴.在和中,,∴≌(AAS),∴.【考點】本題考查了直角三角形兩銳角互余以及三角形全等的判定和性質(zhì),熟練

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論