版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江西省瑞金市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖是一個(gè)三級(jí)臺(tái)階,它的每一級(jí)的長、寬和高分別為9、3和1,A和B是這個(gè)臺(tái)階兩個(gè)相對的端點(diǎn),A點(diǎn)有一只螞蟻,想到B點(diǎn)去吃可口的食物.則這只螞蟻沿著臺(tái)階面爬行的最短路程是(
)A.6 B.8 C.9 D.152、如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)E處,連接DE交AB于點(diǎn)F,當(dāng)∠DEB是直角時(shí),DF的長為(
).A.5 B.3 C. D.3、勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(
)A.直角三角形的面積B.最大正方形的面積C.較小兩個(gè)正方形重疊部分的面積D.最大正方形與直角三角形的面積和4、以下列各組數(shù)的長為邊作三角形,不能構(gòu)成直角三角形的是(
)A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,155、如圖,正方形的邊長為10,,,連接,則線段的長為(
)A. B. C. D.6、如圖,正方體盒子的棱長為2,M為BC的中點(diǎn),則一只螞蟻從A點(diǎn)沿盒子的表面爬行到M點(diǎn)的最短距離為(
)A. B.C. D.7、如圖,桌上有一個(gè)圓柱形玻璃杯(無蓋)高6厘米,底面周長16厘米,在杯口內(nèi)壁離杯口1.5厘米的A處有一滴蜜糖,在玻璃杯的外壁,A的相對方向有一小蟲P,小蟲離杯底的垂直距離為1.5厘米,小蟲爬到蜜糖處的最短距離是(
)A.厘米 B.10厘米 C.厘米 D.8厘米第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面,這根蘆葦?shù)拈L度為_____尺.2、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點(diǎn)C與點(diǎn)A重合,折痕為DE,則△ABE的周長為.3、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來,蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米4、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_______.5、如圖,在中,,于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對稱點(diǎn)落在CD的延長線上.若,,則的面積為__________.6、如圖,已知,那么數(shù)軸上點(diǎn)所表示的數(shù)是________.7、如圖,已知中,,,動(dòng)點(diǎn)M滿足,將線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線段,連接,則的最小值為_________.8、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時(shí),梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動(dòng),將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.三、解答題(7小題,每小題10分,共計(jì)70分)1、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測距儀,測得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計(jì)算敵方汽車的速度嗎?2、如圖,將一個(gè)長方形紙片ABCD沿對角線AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,已知AB=4,BC=2,求折疊后重合部分的面積.3、在邊長為8的等邊ABC中,點(diǎn)D是邊AB上的一動(dòng)點(diǎn),點(diǎn)E在邊AC上,且CE=2AD,射線DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°交BC邊于F.(1)如圖1,求證:∠AED=∠BDF;(2)如圖2,在射線DF上取DP=DE,連接BP,①求∠DBP的度數(shù);②取邊BC的中點(diǎn)M,當(dāng)PM取最小值時(shí),求AD的長.4、已知:如圖,四邊形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的長;(2)求四邊形ABCD的面積.5、如圖,把長方形紙片沿折疊,使點(diǎn)落在邊上的點(diǎn)處,點(diǎn)落在點(diǎn)處.(1)試說明;(2)設(shè),,,試猜想,,之間的關(guān)系,并說明理由.6、閱讀與思考:請閱讀下列材料,并完成相應(yīng)的任務(wù).若直角三角形的三邊的長都是正整數(shù),則三邊的長為“勾股數(shù)”.構(gòu)造勾股數(shù),就是要尋找3個(gè)正整數(shù),使它們滿足“其中兩個(gè)數(shù)的平方和(或平方差)等于第三個(gè)數(shù)的平方”.通過觀察常見勾股數(shù)“3,4,5”;“5,12,13”;“7,24,25”……猜想當(dāng)一組勾股數(shù)中(),最小數(shù)為奇數(shù)時(shí),另兩個(gè)正整數(shù)和滿足比且,解得,.任務(wù):(1)請證明猜想成立,即證明,,構(gòu)成勾股數(shù).(2)若一組勾股數(shù)中,最小數(shù)為9,則另兩個(gè)數(shù)分別是________和________.7、下圖是某“飛越叢林”俱樂部新近打造的一款兒童游戲項(xiàng)目,工作人員告訴小敏,該項(xiàng)目AB段和BC段均由不銹鋼管材打造,總長度為26米,長方形CDEF為一木質(zhì)平臺(tái)的主視圖.小敏經(jīng)過現(xiàn)場測量得知:CD=1米,AD=15米,于是小敏大膽猜想立柱AB段的長為10米,請判斷小敏的猜想是否正確?如果正確,請寫出理由,如果錯(cuò)誤,請求出立柱AB段的正確長度.-參考答案-一、單選題1、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺(tái)階展開得到的是一個(gè)矩形,螞蟻要從B點(diǎn)到A點(diǎn)的最短距離,便是矩形的對角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺(tái)階展開,因?yàn)锳C=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理的應(yīng)用并能得出平面展開圖是解題的關(guān)鍵.2、C【解析】【分析】如圖,由題意知,,,,可知三點(diǎn)共線,與重合,在中,由勾股定理得,求的值,設(shè),,在中,由勾股定理得,計(jì)算求解即可.【詳解】解:如圖,∵是直角∴由題意知,,∴∴三點(diǎn)共線∴與重合在中,由勾股定理得設(shè),在中,由勾股定理得即解得∴的長為故選C.【考點(diǎn)】本題考查了折疊的性質(zhì),勾股定理等知識(shí).解題的關(guān)鍵在于明確三點(diǎn)共線,與重合.3、C【解析】【分析】根據(jù)勾股定理得到c2=a2+b2,根據(jù)正方形的面積公式、長方形的面積公式計(jì)算即可.【詳解】設(shè)直角三角形的斜邊長為c,較長直角邊為b,較短直角邊為a,由勾股定理得,c2=a2+b2,陰影部分的面積=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),較小兩個(gè)正方形重疊部分的長=a-(c-b),寬=a,則較小兩個(gè)正方形重疊部分底面積=a(a+b-c),∴知道圖中陰影部分的面積,則一定能求出較小兩個(gè)正方形重疊部分的面積,故選C.【考點(diǎn)】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.4、B【解析】【分析】先求出兩小邊的平方和,再求出最長邊的平方,最后看看是否相等即可.【詳解】解:A、32+42=52,故是直角三角形,不符合題意;B、42+52≠62,故不是直角三角形,符合題意;C、62+82=102,故是直角三角形,不符合題意;D、92+122=152,故是直角三角形,不符合題意;故選:B.【考點(diǎn)】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.5、B【解析】【分析】延長DH交AG于點(diǎn)E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【詳解】解:延長DH交AG于點(diǎn)E∵四邊形ABCD為正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD為直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故選B.【考點(diǎn)】此題考查是正方形的性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)和利用勾股定理解直角三角形是解決此題的關(guān)鍵.6、B【解析】【分析】先利用展開圖確定最短路線,再利用勾股定理求解即可.【詳解】解:如圖,螞蟻沿路線AM爬行時(shí)距離最短;∵正方體盒子棱長為2,M為BC的中點(diǎn),∴,∴,故選:B.【考點(diǎn)】本題考查了螞蟻爬行的最短路徑為題,涉及到了正方形的性質(zhì)、正方體的展開圖、勾股定理、兩點(diǎn)之間線段最短等知識(shí),解題關(guān)鍵是牢記相關(guān)概念與靈活應(yīng)用.7、B【解析】【分析】把圓柱沿著點(diǎn)A所在母線展開,把圓柱上最短距離轉(zhuǎn)化為將軍飲馬河型最短問題求解即可.【詳解】把圓柱沿著點(diǎn)A所在母線展開,如圖所示,作點(diǎn)A的對稱點(diǎn)B,連接PB,則PB為所求,根據(jù)題意,得PC=8,BC=6,根據(jù)勾股定理,得PB=10,故選B.【考點(diǎn)】本題考查了圓柱上的最短問題,利用圓柱展開,把問題轉(zhuǎn)化為將軍飲馬河問題,靈活使用勾股定理是解題的關(guān)鍵.二、填空題1、13【解析】【分析】找到題中的直角三角形,設(shè)水深為x尺,根據(jù)勾股定理解答.【詳解】解:設(shè)水深為尺,則蘆葦長為尺,根據(jù)勾股定理得:,解得:,蘆葦?shù)拈L度(尺,答:蘆葦長13尺.故答案為:13.【考點(diǎn)】本題考查正確運(yùn)用勾股定理.善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.2、7【解析】【分析】根據(jù)勾股定理求得BC,再根據(jù)折疊性質(zhì)得到AE=CE,進(jìn)而由三角形的周長=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長=AB+BC=3+4=7.故答案是:7.【考點(diǎn)】本題考查勾股定理、折疊性質(zhì),熟練掌握勾股定理是解答的關(guān)鍵.3、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,從現(xiàn)實(shí)圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.4、8【解析】【分析】作交的延長于點(diǎn),在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長于點(diǎn),則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點(diǎn)】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關(guān)鍵.5、【解析】【分析】在△ABC中由等面積求出,進(jìn)而得到,設(shè)BE=x,進(jìn)而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點(diǎn)】本題考查了勾股定理求線段長、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長.6、【解析】【分析】首先根據(jù)勾股定理得:OB=.即OA=.又點(diǎn)A在數(shù)軸的負(fù)半軸上,則點(diǎn)A對應(yīng)的數(shù)是-.【詳解】解:由圖可知,OC=2,作BC⊥OC,垂足為C,取BC=1,故,∵A在x的負(fù)半軸上,∴數(shù)軸上點(diǎn)A所表示的數(shù)是-.故答案為:-.【考點(diǎn)】此題主要考查了實(shí)數(shù)與數(shù)軸,勾股富士蝗應(yīng)用,熟練運(yùn)用勾股定理,同時(shí)注意根據(jù)點(diǎn)的位置以確定數(shù)的符號(hào).7、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關(guān)系得出當(dāng)點(diǎn)N落在線段AB上時(shí),最小,求出最小值即可.【詳解】解:∵線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,解題關(guān)鍵是證明三角形全等,得出,根據(jù)三角形三邊關(guān)系取得最小值.8、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長,同理可得出AB的長,進(jìn)而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問題時(shí),勾股定理與方程的結(jié)合是解決實(shí)際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.三、解答題1、速度為30米每秒【解析】【分析】根據(jù)勾股定理求得的長度,再根據(jù)速度等于路程除以時(shí)間即可求得敵方汽車的速度.【詳解】,,米每秒,答:敵方汽車的速度為30米每秒.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.2、【解析】【分析】先由折疊可知EC=BC=2,進(jìn)而可知AD=CE,通過全等三角形的角角邊判定定理可證明△ADF≌△CEF,由全等可知FE=DF,設(shè)FC為x,則FE=DF=4-x,根據(jù)直角三角形的勾股定理可列方程,從而計(jì)算出CF的長度,通過CF與AD的長度可計(jì)算出重合部分面積.【詳解】解:∵△AEC是由△ABC沿AC折疊后得到的,∴EC=BC=2,且∠E=∠B=90°,在△ADF與△CEF中,,∴△ADF≌△CEF(AAS),設(shè)FC=x,則FE=DF=4-x,在Rt△CEF中,由勾股定理可知:,∴,解得,∴,故折疊后重合部分的面積為.【考點(diǎn)】本題考查圖形折疊的相關(guān)性質(zhì),以及直角三角形的勾股定理的應(yīng)用,以及全等三角形的判定,找到合適的條件,選擇適合的判定方法去證明全等三角形,利用勾股定理和方程思想列方程是解決本題的關(guān)鍵.3、(1)見解析;(2)①30°;②2【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)求解即可;(2)①方法一:連接EP,過點(diǎn)P作GQ∥BC分別交AB,AC于點(diǎn)G,Q,易知△AGQ和△DEP均為等邊三角形,得到△ADE≌△GPD≌△QEP(AAS),即可得解;方法二:在DB上取DG=AE,證明△ADE≌△GPD(SAS),即可得解;②在DB上取DG=AE,當(dāng)時(shí),PM取得最小值,得到PM=2,PB=2,過點(diǎn)G作GH⊥BP于點(diǎn)H,利用直角三角形的性質(zhì)求解即可;【詳解】解:(1)在等邊△ABC中,∵AB=AC,∠A=∠ABC=∠C=60°,∵∠EDF=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF;(2)①方法一:如答題圖1,連接EP,過點(diǎn)P作GQ∥BC分別交AB,AC于點(diǎn)G,Q,易知△AGQ和△DEP均為等邊三角形,∴BG=CQ,∠AGQ=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF,同理∠BDF=∠EPQ,∴可證:△ADE≌△GPD≌△QEP(AAS),∴AD=GP=QE,∵CE=2AD=CQ+EQ=AD+BG,∴PG=BG,∴∠DBP=∠BPG=30°;方法二:如答題圖2,在DB上取DG=AE,∵∠AED=∠BDF又∵DP=DE,∴△ADE≌△GPD(SAS),∴PG=AD,∠PGD=60°,∵CE=AC-AE=AB-DG=AD+BG=2AD,∴BG=AD=PG,∴∠DBP=∠BPG=30°;②如答圖3,在DB上取DG=AE,由①可知∠MBP=30°,AD=BG=PG;當(dāng)時(shí),PM取得最小值;在Rt△BMP中,∠MBP=30°,BM=4,∴PM=2,PB=2;過點(diǎn)G作GH⊥BP于點(diǎn)H,∵BG=PG,∴BH=;在Rt△BGH中,∠GBP=30°,BH=∴BG=2,∴AD=BG=2.【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì)、等邊三角形的綜合應(yīng)用,準(zhǔn)確計(jì)算是解題的關(guān)鍵.4、(1)BD=20;(2)S四邊形ABCD=246.【解析】【分析】(1)由∠A=90°,AD=12,AB=16,利用勾股定理:BD2=AD2+AB2,從而可得答案;(2)利用勾股定理的逆定理證明:∠CDB=90°,再由四邊形的面積等于兩個(gè)直角三角形的面積之和可得答案.【詳解】解:(1)∵∠A=90°,AD=12,AB=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年機(jī)械員考試題庫及參考答案(基礎(chǔ)題)
- 2026年機(jī)械員考試題庫附答案(a卷)
- 2026年法律法規(guī)考試題庫附參考答案(能力提升)
- 風(fēng)險(xiǎn)總監(jiān)面試題集
- 2026年初級(jí)銀行從業(yè)資格之初級(jí)個(gè)人貸款考試題庫及一套完整答案
- 2026年質(zhì)量員之土建質(zhì)量基礎(chǔ)知識(shí)考試題庫(a卷)
- 2026年馬鞍山師范高等??茖W(xué)校單招職業(yè)傾向性考試題庫附答案解析
- 2025年遵義醫(yī)科大學(xué)輔導(dǎo)員考試參考題庫附答案
- 廣州水務(wù)辦公室主任工作績效考核辦法含答案
- 2026年交管12123學(xué)法減分復(fù)習(xí)考試題庫及答案【真題匯編】
- 機(jī)場設(shè)備維修與保養(yǎng)操作手冊
- 動(dòng)脈穿刺法教案(2025-2026學(xué)年)
- 2025年《肌肉骨骼康復(fù)學(xué)》期末考試復(fù)習(xí)參考題庫(含答案)
- 國企合作加盟合同范本
- 工程勘察設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)
- 2025年中國工業(yè)級(jí)小蘇打行業(yè)市場分析及投資價(jià)值評估前景預(yù)測報(bào)告
- 家具生產(chǎn)工藝流程標(biāo)準(zhǔn)手冊
- 消防新隊(duì)員安全培訓(xùn)課件
- 2025瑪納斯縣司法局招聘編制外專職人民調(diào)解員人筆試備考題庫及答案解析
- 德邦物流系統(tǒng)講解
- 初中歷史時(shí)間軸(中外對照橫向版)
評論
0/150
提交評論