版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學上冊《軸對稱》難點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△ABC中,AB=20cm,AC=12cm,點P從點B出發(fā)以每秒3cm速度向點A運動,點Q從點A同時出發(fā)以每秒2cm速度向點C運動,其中一個動點到達端點,另一個動點也隨之停止,當△APQ是以PQ為底的等腰三角形時,運動的時間是(
)秒A.2.5 B.3 C.3.5 D.42、如圖,是由大小一樣的小正方形組成的網(wǎng)格,△ABC的三個頂點均落在小正方形的頂點上.在網(wǎng)格上能畫出的三個頂點都落在小正方形的頂點上,且與△ABC成軸對稱的三角形共有(
)A.5個 B.4個 C.3個 D.2個3、下列標志圖形屬于軸對稱圖形的是()A. B.C. D.4、如圖,△ABC和△ECD都是等腰直角三角形,△ABC的頂點A在△ECD的斜邊DE上.下列結論:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD是直角三角形.其中正確的有()A.1個 B.2個 C.3個 D.4個5、如圖,已知AB=AC=BD,那么∠1與∠2之間的關系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180° D.3∠1-∠2=180°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在矩形ABCD中,AD=6,AB=4,∠BAD的平分線交BC于點E,則DE=____.2、如圖,在△ABC中,AB=AC,∠BAC=36°,DE是線段AC的垂直平分線,若BE=,AE=,則用含、的代數(shù)式表示△ABC的周長為__________.3、小明將一張正方形紙片按如圖所示順序折疊成紙飛機,當機翼展開在同一平面時(機翼間無縫隙),的度數(shù)是________.4、一輛汽車的牌照在車下方水坑中的像是,則這輛汽車的牌照號碼應為_____.5、如圖,屋頂鋼架外框是等腰三角形,其中,立柱,且頂角,則的大小為_______.三、解答題(5小題,每小題10分,共計50分)1、如圖,在ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(點D不與點B、C重合),連接AD,作∠ADE=40°,DE交線段AC于點E.(1)當∠BDA=115°時,∠EDC=______°,∠AED=______°;(2)線段DC的長度為何值時,△ABD≌△DCE,請說明理由;(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求∠BDA的度數(shù);若不可以,請說明理由.2、如圖,在△ABC中,AB=AC,D,E是BC邊上的點,連接AD,AE,以△ADE的邊AE所在直線為對稱軸作△ADE的軸對稱圖形△AD'E,連接D'C,若BD=CD'.(1)求證:△ABD≌△ACD'.(2)若∠BAC=100°,求∠DAE的度數(shù).3、如圖,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC與BD相交于點O,限用無刻度直尺完成以下作圖:(1)在圖1中作線段BC的中點P;(2)在圖2中,在OB、OC上分別取點E、F,使EF∥BC.4、如圖,中,,,.(1)用直尺和圓規(guī)作的垂直平分線;(保留作圖痕跡,不要求寫作法)(2)若(1)中所作的垂直平分線交于點,求的長.5、請僅用無刻度的直尺完成下列畫圖,不寫畫法,保留畫圖痕跡.(1)如圖①,四邊形ABCD中,AB=AD,B=D,畫出四邊形ABCD的對稱軸m;(2)如圖②,四邊形ABCD中,AD∥BC,A=D,畫出邊BC的垂直平分線n.-參考答案-一、單選題1、D【解析】【分析】設運動時間為x秒時,AP=AQ,根據(jù)點P、Q的出發(fā)點及速度,即可得出關于t的一元一次方程,解之即可得出結論.【詳解】設運動的時間為x秒,在△ABC中,AB=20cm,AC=12cm,點P從點B出發(fā)以每秒3cm的速度向點A運動,點Q從點A同時出發(fā)以每秒2cm的速度向點C運動,當△APQ是以PQ為底的等腰三角形時,AP=AQ,AP=20﹣3x,AQ=2x,即20﹣3x=2x,解得x=4故選:D.【考點】此題主要考查學生對等腰三角形的性質這一知識點的理解和掌握,此題涉及到動點,有一定的拔高難度,屬于中檔題.2、A【解析】【分析】認真讀題,觀察圖形,根據(jù)圖形特點先確定對稱軸,再根據(jù)對稱軸找出相應的三角形.【詳解】解:如圖:與△ABC成軸對稱的三角形有:①△FCD關于CG對稱;②△GAB關于EH對稱;③△AHF關于AD對稱;④△EBD關于BF對稱;⑤△BCG關于AG的垂直平分線對稱.共5個.故選A.【考點】本題考查軸對稱的基本性質,結合了圖形的常見的變化,要根據(jù)直角三角形的特點從圖中找到有關的直角三角形再判斷是否為對稱圖形.3、B【解析】【分析】根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,不符合題意;B、是軸對稱圖形,符合題意;C、不是軸對稱圖形,不符合題意;D、不是軸對稱圖形,不符合題意.故選:B.【考點】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.4、C【解析】【分析】根據(jù)等腰直角三角形的性質得到CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,則可根據(jù)“SAS”證明△ACE≌△BCD,于是可對①進行判斷;利用三角形外角性質得到∠DAB+∠BAC=∠E+∠ACE,加上∠CAB=∠E=45°,則可得對②進行判斷;利用CE=CD和三角形三邊之間的關系可對③進行判斷;根據(jù)△ACE≌△BCD得到∠BDC=∠E=45°,則可對④進行判斷.【詳解】∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,∵∠ACE+∠ACD=∠ACD+∠BCD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),所以①正確;∵∠DAC=∠E+∠ACE,即∠DAB+∠BAC=∠E+∠ACE,而∠CAB=∠E=45°,∴∠DAB=∠ACE,所以②正確;∵AE+AC>CE,CE=CD,∴AE+AC>CD,所以③錯誤;∵△ACE≌△BCD,∴∠BDC=∠E=45°,∵∠CDE=45°,∴∠ADB=∠ADC+∠BDC=45°+45°=90°,∴△ADB為直角三角形,所以④正確.故選:C.【考點】本題是考查了全等三角形的判定和性質,等腰直角三角形的性質,直角三角形的判定與性質等知識,熟練掌握全等三角形的判定與性質和等腰直角三角形的性質是解題的關鍵.5、D【解析】【分析】根據(jù)等腰三角形的性質和三角形的內角和定理可得∠B=180°-2∠1=∠C,根據(jù)三角形的外角性質可得∠C=∠1-∠2,進一步即得答案.【詳解】解:∵AB=AC=BD,∴∠BAD=∠1,∠B=∠C,∴∠B=180°-2∠1=∠C,∵∠C=∠1-∠2,∴180°-2∠1=∠1-∠2,∴3∠1-∠2=180°.故選:D.【考點】本題考查了等腰三角形的性質、三角形的內角和定理和三角形的外角性質等知識,屬于基本題型,熟練掌握上述知識是解題的關鍵.二、填空題1、2【解析】【分析】由矩形的性質及角平分線的性質解得,,即可證明是等腰直角三角形,從而解得,最后在中利用勾股定理解題即可.【詳解】在矩形ABCD中,平分是等腰直角三角形中故答案為:2.【考點】本題考查矩形的性質、等腰直角三角形的判定與性質、勾股定理等知識,是重要考點,難度較易,掌握相關知識是解題關鍵.2、2a+3b【解析】【分析】由題意可知:AC=AB=a+b,由于DE是線段AC的垂直平分線,∠BAC=36°,所以易證AE=CE=BC=b,從可知△ABC的周長為:AB+AC+BC=2a+3b.【詳解】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是線段AC的垂直平分線,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB?∠ECA=36°,∴∠BEC=180°?∠ABC?∠ECB=72°,∴CE=BC=b,∴△ABC的周長為:AB+AC+BC=2a+3b故答案為2a+3b.【考點】本題考查線段垂直平分線的性質,解題的關鍵是利用等腰三角形的性質以及垂直平分線的性質得出AE=CE=BC,本題屬于中等題型.3、45°【解析】【分析】根據(jù)折疊過程可知,在折疊過程中角一直是軸對稱的折疊.【詳解】在折疊過程中角一直是軸對稱的折疊,故答案為45°【考點】考核知識點:軸對稱.理解折疊的本質是關鍵.4、H?8379【解析】【分析】易得所求的牌照與看到的牌照關于水平的一條直線成軸對稱,作出相應圖形即可求解.【詳解】解:如圖所示:該車牌照號碼為:H?8379.故答案為:H?8379.【考點】本題考查軸對稱的應用,熟練掌握軸對稱的性質是解題關鍵.5、30°##30度【解析】【分析】先由等邊對等角得到,再根據(jù)三角形的內角和進行求解即可.【詳解】,,,,,故答案為:30°.【考點】本題考查了等腰三角形的性質及三角形的內角和定理,熟練掌握知識點是解題的關鍵.三、解答題1、(1)25°,65°;(2)2,理由見詳解;(3)可以,110°或80°.【解析】【分析】(1)利用鄰補角的性質和三角形內角和定理解題;(2)當DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)當∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形.【詳解】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°-∠B-∠ADB=180°-115°-40°=25°,∵AB=AC,∴∠C=∠B=40°,∵∠EDC=180°-∠ADB-∠ADE=25°,∴∠DEC=180°-∠EDC-∠C=115°,∴∠AED=180°-∠DEC=180°-115°=65°;(2)當DC=2時,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);(3)當∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形,∵∠BDA=110°時,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形狀是等腰三角形;∵當∠BDA的度數(shù)為80°時,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形狀是等腰三角形.【考點】本題主要考查學生對等腰三角形的判定與性質,全等三角形的判定與性質,三角形外角的性質等知識點的理解和掌握,此題涉及到的知識點較多,綜合性較強,但難度不大,屬于基礎題.2、(1)見解析;(2).【解析】【分析】(1)由對稱得到,再證明即可;(2)由全等三角形的性質,得到,∠BAC==100°,最后根據(jù)對稱圖形的性質解題即可.【詳解】解:(1)以△ADE的邊AE所在直線為對稱軸作△ADE的軸對稱圖形△A,在△ABD與中,(2),∠BAC==100°,以△ADE的邊AE所在直線為對稱軸作△ADE的軸對稱圖形△A,∠DAE.【考點】本題考查全等三角形的判定與性質、軸對稱的性質等知識,是重要考點,難度一般,掌握相關知識是解題關鍵.3、(1)見解析;(2)見解析.【解析】【分析】(1)延長BA和CD,它們相交于點Q,然后延長QO交BC于P,則PB=PC,根據(jù)線段垂直平分線的逆定理可證明;(2)連結AP交OB于E,連結DP交OC于F,則EF∥BC.分別證明△BEP≌△CFP,△BEP≌△CFP可得∠APB=∠DPC和∠PEF=∠PFE,根據(jù)三角形內角和定理和平角的定義可得∠APB=∠PEF,即可證明EF//BC.【詳解】解:(1)如圖1,點P為所作,理由如下:∵∠A=∠D=90°,AC=BD,BC=CB,∴△ABC≌△DCB∴∠ABC=∠DCB,∠ACB=∠DBC∴QB=QC,OB=OC∴Q,O在BC的垂直平分線上,∴延長QO交BC于P,就有P為線段BC的中點;(2)如圖2,EF為所作.理由如下:∵△ABC≌△DCB∴AB=DC,又∵∠ABC=∠DCB,BP=PC∴△ABP≌△DCP∴∠APB=∠DPC又∵∠DBC=∠ACB,BP=PC∴△BEP≌△CFP∴PE=PF∴∠PEF=∠PFE,∵∠APB+∠DPC+∠APD=180°∠PEF+∠PFE+∠APD=180°∴∠APB=∠PEF∴EF//BC.【考點】本題考查作圖——復雜作圖,等腰三角形的性質,線段垂直平分線的逆定理,平行線的判定定理,全等三角形的判定與性質.掌握相關定理并能熟練運用是解決此題的關鍵.4、(1)詳見解析;(2).【解析】【分析】(1)分別以,為圓心,大于為半徑畫弧,兩弧交于點,,作直線即可.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年工業(yè)縫紉機電控項目建議書
- 2025年ITO靶材項目合作計劃書
- 血液科患者活動與康復護理
- 護理告知制度與職業(yè)道德
- 兒童飲食中的食物營養(yǎng)標簽
- 胃癌患者的護理倫理與溝通
- 員工培訓內訓課件
- 病人評估與護理計劃
- 常見病康復護理技巧
- 中職護理課程設計與教學資源開發(fā)
- 雨課堂學堂云在線《中國馬克思主義與當代(北京化工大學 )》單元測試考核答案
- 貴州省貴陽市2025-2026學年高三上學期11月質量監(jiān)測化學試卷(含答案)
- 機場設備維修與保養(yǎng)操作手冊
- 動脈穿刺法教案(2025-2026學年)
- 2025年《肌肉骨骼康復學》期末考試復習參考題庫(含答案)
- 工程勘察設計收費標準
- 2025年中國工業(yè)級小蘇打行業(yè)市場分析及投資價值評估前景預測報告
- 家具生產(chǎn)工藝流程標準手冊
- 消防新隊員安全培訓課件
- 2025瑪納斯縣司法局招聘編制外專職人民調解員人筆試備考題庫及答案解析
- 德邦物流系統(tǒng)講解
評論
0/150
提交評論