難點(diǎn)解析合肥市第四十八中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練試卷(解析版)_第1頁(yè)
難點(diǎn)解析合肥市第四十八中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練試卷(解析版)_第2頁(yè)
難點(diǎn)解析合肥市第四十八中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練試卷(解析版)_第3頁(yè)
難點(diǎn)解析合肥市第四十八中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練試卷(解析版)_第4頁(yè)
難點(diǎn)解析合肥市第四十八中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練試卷(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

合肥市第四十八中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,△ABC中,D,E分別為BC,AD的中點(diǎn),若△CDE的面積使2,則△ABC的面積是()A.4 B.5 C.6 D.82、已知線段AB=9cm,AC=5cm,下面有四個(gè)說(shuō)法:①線段BC長(zhǎng)可能為4cm;②線段BC長(zhǎng)可能為14cm;③線段BC長(zhǎng)不可能為3cm;④線段BC長(zhǎng)可能為9cm.所有正確說(shuō)法的序號(hào)是()A.①② B.③④ C.①②④ D.①②③④3、以下列各組線段為邊,能組成三角形的是()A.2cm、10cm、13cm B.3cm、7cm、4cmC.4cm、4cm、4cm D.5cm、14cm、6cm4、如圖,D為∠BAC的外角平分線上一點(diǎn),過(guò)D作DE⊥AC于E,DF⊥AB交BA的延長(zhǎng)線于F,且滿足∠FDE=∠BDC,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5、如圖,若MB=ND,∠MBA=∠NDC,下列條件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N6、已知:如圖,∠BAD=∠CAE,AB=AD,∠B=∠D,則下列結(jié)論正確的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE7、一個(gè)三角形的兩邊長(zhǎng)分別是3和7,且第三邊長(zhǎng)為整數(shù),這樣的三角形周長(zhǎng)最大的值為()A. B. C. D.8、如圖,圖形中的的值是()A.50 B.60 C.70 D.809、如圖,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),那么圖中的全等三角形的對(duì)數(shù)是()A.0 B.1 C.2 D.310、如圖,ABC的面積為18,AD平分∠BAC,且AD⊥BD于點(diǎn)D,則ADC的面積是()A.8 B.10 C.9 D.16第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、一個(gè)等腰三角形的一邊長(zhǎng)為2,另一邊長(zhǎng)為9,則它的周長(zhǎng)是________________.2、如圖,A,B在一水池的兩側(cè),,,AC,BD交于點(diǎn)E,,若,則水池寬______m.3、等腰三角形的一條邊長(zhǎng)為4cm,另一條邊長(zhǎng)為6cm,則它的周長(zhǎng)是________.4、如圖,在中,平分,于點(diǎn)E,若的面積為,則陰影部分的面積為_(kāi)_______.5、在新年聯(lián)歡會(huì)上,老師設(shè)計(jì)了“你說(shuō)我畫(huà)”的游戲.游戲規(guī)則如下:甲同學(xué)需要根據(jù)乙同學(xué)提供的三個(gè)條件畫(huà)出形狀和大小都確定的三角形.已知乙同學(xué)說(shuō)出的前兩個(gè)條件是“,”.現(xiàn)僅存下列三個(gè)條件:①;②;③.為了甲同學(xué)畫(huà)出形狀和大小都確定的,乙同學(xué)可以選擇的條件有:______.(填寫(xiě)序號(hào),寫(xiě)出所有正確答案)6、圖①是將木條用釘子釘成的四邊形和三角形木架,拉動(dòng)木架,觀察圖②中的變動(dòng)情況,說(shuō)一說(shuō),其中所蘊(yùn)含的數(shù)學(xué)原理是_____.7、如圖,在△ABC中,點(diǎn)D,E,F(xiàn)分別為BC,AD,CE的中點(diǎn),且S△BEF=2cm2,則S△ABC=__________.8、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結(jié)論有_____.(填序號(hào))9、如圖,為△ABC的中線,為△的中線,為△的中線,……按此規(guī)律,為△的中線.若△ABC的面積為8,則△的面積為_(kāi)______________.10、如圖,ABDC,ADBC,AC與BD交于點(diǎn)O,EF經(jīng)過(guò)點(diǎn)O,與AD、BC分別交于點(diǎn)E和F,則圖中共有___對(duì)全等三角形.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,,,求證:.2、如圖所示,已知,請(qǐng)你添加一個(gè)條件,證明:.(1)你添加的條件是______;(2)請(qǐng)寫(xiě)出證明過(guò)程.3、用無(wú)刻度的直尺作圖,保留作圖痕跡.(1)在圖1中,BD是△ABC的角平分線,作△ABC的平分內(nèi)角∠BCA的角平分線;(2)在圖2中,AD是∠BAC的角平分線,作△ABC的∠BCA相鄰的外角的角平分線.4、如圖,在同一平面內(nèi)有四個(gè)點(diǎn)A、B、C、D,請(qǐng)按要求完成下列問(wèn)題.(注:此題作圖不要求寫(xiě)出畫(huà)法和結(jié)論)(1)分別連接AB、AD,作射線AC,作直線BD與射線AC相交于點(diǎn)O;(2)我們?nèi)菀着袛喑鼍€段AB+AD與BD的數(shù)量關(guān)系是,理由是.5、如圖,點(diǎn)C、F在BE上,BF=EC,AB∥DE,且∠A=∠D,求證:AC=DF6、探究與發(fā)現(xiàn):如圖①,在△ABC中,∠B=∠C=45°,點(diǎn)D在BC邊上,點(diǎn)E在AC邊上,且∠ADE=∠AED,連接DE.(1)當(dāng)∠BAD=60°時(shí),求∠CDE的度數(shù);(2)當(dāng)點(diǎn)D在BC(點(diǎn)B、C除外)邊上運(yùn)動(dòng)時(shí),試猜想∠BAD與∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.(3)深入探究:如圖②,若∠B=∠C,但∠C≠45°,其他條件不變,試探究∠BAD與∠CDE的數(shù)量關(guān)系.-參考答案-一、單選題1、D【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可求出的面積.【詳解】∵AD是BC上的中線,∴,∵CE是中AD邊上的中線,∴,∴,即,∵的面積是2,∴.故選:D.【點(diǎn)睛】本題考查的是三角形的中線的性質(zhì),三角形一邊上的中線把原三角形分成的兩個(gè)三角形的面積相等.2、D【分析】分三種情況:C在線段AB上,C在線段BA的延長(zhǎng)線上以及C不在直線AB上結(jié)合線段的和差以及三角形三邊的關(guān)系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當(dāng)A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當(dāng)A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點(diǎn)睛】此題主要考查了三角形三邊關(guān)系,線段之間的關(guān)系,正確分類討論是解題關(guān)鍵.3、C【分析】由題意根據(jù)“三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”對(duì)各選項(xiàng)進(jìn)行逐一分析即可.【詳解】解:根據(jù)三角形的三邊關(guān)系,A、2+10<13,不能組成三角形,不符合題意;B、3+4=7,不能夠組成三角形,不符合題意;C、4+4>4,能組成三角形,符合題意;D、5+6<14,不能組成三角形,不符合題意.故選:C.【點(diǎn)睛】本題主要考查三角形三邊關(guān)系,注意掌握判斷能否組成三角形的簡(jiǎn)便方法是看較小的兩個(gè)數(shù)的和是否大于第三個(gè)數(shù).4、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點(diǎn)睛】本題主要考查了全等三角形的判定及性質(zhì),外角的性質(zhì)等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關(guān)鍵.5、A【分析】根據(jù)兩個(gè)三角形全等的判定定理,有AAS、SSS、ASA、SAS四種.逐條驗(yàn)證.【詳解】解:A、根據(jù)條件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A選項(xiàng)符合題意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B選項(xiàng)不符合題意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C選項(xiàng)不符合題意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D選項(xiàng)不符合題意.故選:A.【點(diǎn)睛】本題重點(diǎn)考查了三角形全等的判定定理,兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本題是一道較為簡(jiǎn)單的題目.6、D【分析】根據(jù)已知條件利用ASA證明可得AC=AE,BC=DE,進(jìn)而逐一進(jìn)行判斷.【詳解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C選項(xiàng)錯(cuò)誤;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A選項(xiàng)錯(cuò)誤;D選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).7、C【分析】先根據(jù)三角形的三邊關(guān)系定理求得第三邊的取值范圍;再根據(jù)第三邊是整數(shù),從而求得周長(zhǎng)最大時(shí),對(duì)應(yīng)的第三邊的長(zhǎng).【詳解】解:設(shè)第三邊為a,根據(jù)三角形的三邊關(guān)系,得:7-3<a<3+7,即4<a<10,∵a為整數(shù),∴a的最大值為9,則三角形的最大周長(zhǎng)為9+3+7=19.故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.8、B【分析】根據(jù)三角形外角的性質(zhì):三角形一個(gè)外角的度數(shù)等于與其不相鄰的兩個(gè)內(nèi)角的度數(shù)和進(jìn)行求解即可.【詳解】解:由題意得:∴,∴,故選B.【點(diǎn)睛】本題主要考查了三角形外角的性質(zhì),解一元一次方程,熟知三角形外角的性質(zhì)是解題的關(guān)鍵.9、D【分析】先利用SSS證明△ABD≌△ACD,再利用SAS證明△ABE≌△ACE,最后利用SSS證明△BDE≌△CDE即可.【詳解】∵AB=AC,點(diǎn)D是BC的中點(diǎn),∴AB=AC,BD=CD,AD=AD,∴△ABD≌△ACD,∴∠BAE=∠CAE,∵AB=AC,AE=AE,∴△ABE≌△ACE,∴BE=CE,∵BD=CD,DE=DE,∴△BDE≌△CDE,故選D.【點(diǎn)睛】本題考查了三角形全等的判定和性質(zhì),結(jié)合圖形特點(diǎn),選擇合適的判定方法是解題的關(guān)鍵.10、C【分析】延長(zhǎng)BD交AC于點(diǎn)E,根據(jù)角平分線及垂直的性質(zhì)可得:,,依據(jù)全等三角形的判定定理及性質(zhì)可得:,,再根據(jù)三角形的面積公式可得:SΔABD=SΔADE,SΔBDC=S【詳解】解:如圖,延長(zhǎng)BD交AC于點(diǎn)E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故選:C.【點(diǎn)睛】題目主要考查全等三角形的判定和性質(zhì),角平分線的定義等,熟練掌握基礎(chǔ)知識(shí),進(jìn)行邏輯推理是解題關(guān)鍵.二、填空題1、20【分析】題目給出等腰三角形有兩條邊長(zhǎng)為2和9,而沒(méi)有明確腰、底分別是多少,所以要進(jìn)行討論,還要應(yīng)用三角形的三邊關(guān)系驗(yàn)證能否組成三角形.【詳解】解:分兩種情況:當(dāng)腰為2時(shí),2+2<9,所以不能構(gòu)成三角形;當(dāng)腰為9時(shí),2+9>9,所以能構(gòu)成三角形,周長(zhǎng)是:2+9+9=20.故答案為:20.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒(méi)有明確腰和底邊的題目一定要想到兩種情況,分類進(jìn)行討論,還應(yīng)驗(yàn)證各種情況是否能構(gòu)成三角形進(jìn)行解答,這點(diǎn)非常重要,也是解題的關(guān)鍵.2、80【分析】根據(jù)“”證明即可得出.【詳解】解:∵,,∴,在和中,,∴,∵,∴,故答案為:.【點(diǎn)睛】本題考查了全等三角形的實(shí)際應(yīng)用,熟練掌握全等三角形的判定定理以及性質(zhì)定理是解本題的關(guān)鍵.3、16cm或14cm【分析】根據(jù)題意分腰為6cm和底為6cm兩種情況,分別求出即可.【詳解】解:①當(dāng)腰為6cm時(shí),它的周長(zhǎng)為6+6+4=16(cm);②當(dāng)?shù)诪?cm時(shí),它的周長(zhǎng)為6+4+4=14(cm);故答案為:16cm或14cm.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)的應(yīng)用,注意:等腰三角形的兩腰相等,注意分類討論.4、6【分析】證點(diǎn)E為AD的中點(diǎn),可得△ACE與△ACD的面積之比,同理可得△ABE和△ABD的面積之比,即可解答出.【詳解】解:如圖,平分,于點(diǎn)E,∴,,∵,∴≌∴,∴S△ACE:S△ACD=1:2,同理可得,S△ABE:S△ABD=1:2,∵S△ABC=12,∴陰影部分的面積為S△ACE+S△ABE=S△ABC=×12=6.故答案為6.【點(diǎn)睛】本題主要考查了全等三角形的判定與性質(zhì)及三角形面積的等積變換,解題關(guān)鍵是明確三角形的中線將三角形分成面積相等的兩部分.5、②【分析】根據(jù)兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等,即可求解.【詳解】解:①若選,是邊邊角,不能得到形狀和大小都確定的;②若選,是邊角邊,能得到形狀和大小都確定的;③若選,是邊邊角,不能得到形狀和大小都確定的;所以乙同學(xué)可以選擇的條件有②.故答案為:②【點(diǎn)睛】本題主要考查了全等三角形的判定,熟練掌握兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等是解題的關(guān)鍵.6、三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性【分析】根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性解答.【詳解】由圖示知,四邊形變形了,而三角形沒(méi)有變形,其中所蘊(yùn)含的數(shù)學(xué)原理是三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.故答案是:三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.【點(diǎn)睛】本題考查了三角形的穩(wěn)定性和四邊形具有不穩(wěn)定性,關(guān)鍵抓住圖中圖形是否變形,從而判斷是否具有穩(wěn)定性.7、8cm2【分析】由于三角形的中線將三角形分成面積相等的兩部分,則S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E點(diǎn)為AD的中點(diǎn)得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【詳解】解:∵F點(diǎn)為CE的中點(diǎn),∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D點(diǎn)為BC的中點(diǎn),∴S△BDE=S△BCE=2cm2,∵E點(diǎn)為AD的中點(diǎn),∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案為:8cm2.【點(diǎn)睛】本題考查了三角形的中線,根據(jù)三角形的中線等分三角形的面積是解本題的關(guān)鍵.8、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯(cuò)誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯(cuò)誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結(jié)論有:①②③⑤.故答案為:①②③⑤.【點(diǎn)睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識(shí)點(diǎn)的運(yùn)用.要求學(xué)生具備運(yùn)用這些定理進(jìn)行推理的能力.9、【分析】根據(jù)三角形的中線性質(zhì),可得△的面積=,△的面積=,……,進(jìn)而即可得到答案.【詳解】由題意得:△的面積=,△的面積=,……,△的面積==.故答案是:.【點(diǎn)睛】本題主要考查三角形的中線的性質(zhì),掌握三角形的中線把三角形的面積平分,是解題的關(guān)鍵.10、6【分析】根據(jù)平行線的性質(zhì)得出∠DAC=∠BCA,∠DCA=∠BAC,根據(jù)全等三角形的判定定理ASA可以推出△ABC≌△CDA,△ABD≌△CDB,根據(jù)全等三角形的性質(zhì)得出AD=CB,AB=CD根據(jù)全等三角形的判定定理AAS推出△AOB≌△COD,△AOD≌△COB,根據(jù)全等三角形的性質(zhì)定理得出AO=CO,BO=DO,根據(jù)全等三角形的判定定理ASA推出△AOE≌△COF,△DOE≌△BOF即可.【詳解】解:∵ABDC,ADBC,∴∠DAC=∠BCA,∠DCA=∠BAC,在△ABC和△CDA中,∴△ABC≌△CDA(ASA),∴AD=CB,AB=CD,同理△ABD≌△CDB,在△AOB和△COD中,∴△AOB≌△COD(AAS),同理△AOD≌△COB,∴AO=CO,BO=DO,在△AOE和△COF中,∴△AOE≌△COF同理△DOE≌△BOF.【點(diǎn)睛】本題考查了全等三角形的判定定理和性質(zhì)定理,平行線的性質(zhì)等知識(shí)點(diǎn),能熟記全等三角形的判定定理和性質(zhì)定理是解此題的關(guān)鍵,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS兩直角三角形全等還有HL等,②全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.三、解答題1、證明過(guò)程見(jiàn)解析【分析】先證明,得到,,再證明,即可得解;【詳解】由題可得,在和中,,∴,∴,,又∵,∴,在和中,,∴,∴.【點(diǎn)睛】本題主要考查了全等三角形的判定與性質(zhì),準(zhǔn)確分析證明是解題的關(guān)鍵.2、(1);(2)見(jiàn)解析【分析】(1)此題是一道開(kāi)放型的題目,答案不唯一,如∠B=∠C或∠ADB=∠ADC等;(2)根據(jù)全等三角形的判定定理AAS推出△ABD≌△ACD,再根據(jù)全等三角形的性質(zhì)得出即可.【詳解】解:添加的條件是,故答案為:;證明:在和中,≌,.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等.3、(1)見(jiàn)解析;(2)見(jiàn)解析.【分析】(1)作∠BAC的平分線交BD于點(diǎn)O,作射線CO交AB于E,線段CE即為所求;(2)作△ABC的∠ABC的外角的平分線交AD與D,作射線CD,射線CD即為所求.【詳解】(1)如圖1,線段CE為所求;(2)如圖2,線段CD為所求.【點(diǎn)睛】本題主要考查了基本作圖、三角形的外角、三角形的角平分線等知識(shí)點(diǎn),理解三角形的內(nèi)角平分線交于一點(diǎn)成為解答本題的關(guān)鍵.4、(1)見(jiàn)解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論