考點(diǎn)解析四川省萬源市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合訓(xùn)練試題(含解析)_第1頁
考點(diǎn)解析四川省萬源市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合訓(xùn)練試題(含解析)_第2頁
考點(diǎn)解析四川省萬源市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合訓(xùn)練試題(含解析)_第3頁
考點(diǎn)解析四川省萬源市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合訓(xùn)練試題(含解析)_第4頁
考點(diǎn)解析四川省萬源市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合訓(xùn)練試題(含解析)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省萬源市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、下面各圖中,不能證明勾股定理正確性的是()A. B. C. D.2、在中,,,,的對(duì)邊分別是a,b,c,若,,則的面積是(

)A. B. C. D.3、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底墻到左墻角的距離為1.5m,頂端距離地面2m,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面0.7m,那么小巷的寬度為(

)A.3.2m B.3.5m C.3.9m D.4m4、如圖是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形的兩直角邊分別是a、b,且,大正方形的面積是9,則小正方形的面積是(

)A.3 B.4 C.5 D.65、如圖所示的網(wǎng)格是正方形網(wǎng)格,A,B,C,D是網(wǎng)格線交點(diǎn),則與的大小關(guān)系為(

)A. B. C. D.無法確定6、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(

)A.50cm B.120cm C.140cm D.100cm7、《九章算術(shù)》被尊為古代數(shù)學(xué)“群經(jīng)之首”,其卷九勾股定理篇記載:今有圓材埋于壁中,不知大?。凿忎徶钜淮?,鋸道長(zhǎng)一尺.問徑幾何?如圖,大意是,今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這個(gè)木材,鋸口深等于1寸,鋸道長(zhǎng)1尺,則圓形木材的直徑是(

)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、在繼承和發(fā)揚(yáng)紅色學(xué)校光榮傳統(tǒng),與時(shí)俱進(jìn),把育英學(xué)校建成一所文明的、受社會(huì)尊敬的學(xué)校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.2、如圖,學(xué)校有一塊長(zhǎng)方形草坪,有極少數(shù)人為了避開拐角走“捷徑”,在草坪內(nèi)走出了一條“路”,他們僅僅少走了________步路(假設(shè)步為米),卻踩傷了花草.3、如圖,在一次綜合實(shí)踐活動(dòng)中,小明將一張邊長(zhǎng)為10cm的正方形紙片ABCD,沿著BC邊上一點(diǎn)E與點(diǎn)A的連線折疊,點(diǎn)B'是點(diǎn)B的對(duì)應(yīng)點(diǎn),延長(zhǎng)EB'交DC于點(diǎn)G,B'G=cm,則△ECG的面積為_____cm2.4、如圖,在高2米,坡角為30°的樓梯表面鋪地毯,地毯的長(zhǎng)至少需______米.5、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_______.6、如圖,△ABC中,∠C=90°,AD平分∠BAC,AB=5,AC=3,則BD的長(zhǎng)是__.7、如圖,一個(gè)高,底面周長(zhǎng)的圓柱形水塔,現(xiàn)制造一個(gè)螺旋形登梯,為了減小坡度,要求登梯繞塔環(huán)繞一周半到達(dá)頂端,問登梯至少為___________長(zhǎng).8、如圖,在的網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都為1,的頂點(diǎn)、、都在格點(diǎn)上,點(diǎn)為邊的中點(diǎn),則線段的長(zhǎng)為________.三、解答題(7小題,每小題10分,共計(jì)70分)1、設(shè)直角三角形的兩條直角邊長(zhǎng)及斜邊上的高分別為a,b及h,求證:.2、如圖是“弦圖”的示意圖,“弦圖”最早是由三國(guó)時(shí)期的數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作注時(shí)給出的,它標(biāo)志著中國(guó)古代的數(shù)學(xué)成就.它由4個(gè)全等的直角三角形與一個(gè)小正方形組成,恰好拼成一個(gè)大正方形,每個(gè)直角三角形的兩條直角邊分別為a、b,斜邊為c.請(qǐng)你運(yùn)用此圖形證明勾股定理:a2+b2=c2.3、如圖,點(diǎn)是內(nèi)一點(diǎn),把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,且,,.(1)判斷的形狀,并說明理由;(2)求的度數(shù).4、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.5、如圖,在正方形ABCD中,E是邊AB上的一動(dòng)點(diǎn),點(diǎn)F在邊BC的延長(zhǎng)線上,且,連接DE,DF.(1)求證:;(2)連接EF,取EF中點(diǎn)G,連接DG并延長(zhǎng)交BC于H,連接BG.①依題意,補(bǔ)全圖形;②求證:;③若,用等式表示線段BG,HG與AE之間的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論.6、如圖是一個(gè)長(zhǎng)方形的大門,小強(qiáng)拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現(xiàn)竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對(duì)角線的長(zhǎng).已知大門寬4尺,請(qǐng)求出竹竿的長(zhǎng).7、如圖,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,點(diǎn)A,C,D依次在同一直線上,且AB∥DE.(1)求證:△ABC≌△DCE;(2)連結(jié)AE,當(dāng)BC=5,AC=12時(shí),求AE的長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】把各圖中每一部分的面積和整體的面積分別列式表示,根據(jù)每一部分的面積之和等于整體的面積,分別化簡(jiǎn),再根據(jù)化簡(jiǎn)結(jié)果即可解答.【詳解】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能證明勾股定理,故本選項(xiàng)不符合題意;B、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能證明勾股定理,故本選項(xiàng)不符合題意;C、根據(jù)圖形不能證明勾股定理,故本選項(xiàng)符合題意;D、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能證明勾股定理,故本選項(xiàng)不符合題意;故選C.【考點(diǎn)】本題考查勾股定理的證明,解題的關(guān)鍵是利用構(gòu)圖法來證明勾股定理.2、A【解析】【分析】根據(jù)題意可知,的面積為,結(jié)合已知條件,根據(jù)完全平方公式變形求值即可.【詳解】解:中,,,,所對(duì)的邊分別為a,b,c,,∵,,∴,,故A正確.故選:A.【考點(diǎn)】本題主要考查了勾股定理,完全平方公式變形求值,解題的關(guān)鍵是將完全平方公式變形求出ab的值.3、C【解析】【分析】如圖,在Rt△ACB中,先根據(jù)勾股定理求出AB,然后在Rt△A′BD中根據(jù)勾股定理求出BD,進(jìn)而可得答案.【詳解】解:如圖,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故選:C.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,正確理解題意、熟練掌握勾股定理是解題的關(guān)鍵.4、A【解析】【分析】觀察圖形可知,小正方形的面積=大正方形的面積?4個(gè)直角三角形的面積,利用已知(a+b)2=15,大正方形的面積為9,可以得出直角三角形的面積,進(jìn)而求出答案.【詳解】解:∵(a+b)2=15,∴a2+2ab+b2=15,∵大正方形的面積為:a2+b2=9,∴2ab=15?9=6,即ab=3,∴直角三角形的面積為:,∴小正方形的面積為:,故選:A.【考點(diǎn)】此題主要考查了完全平方公式及勾股定理的應(yīng)用,熟練應(yīng)用完全平方公式及勾股定理是解題關(guān)鍵.5、C【解析】【分析】根據(jù)每個(gè)小網(wǎng)格都為正方形,設(shè)每個(gè)網(wǎng)格為1,由勾股定理可以求出AD、AC、CD的長(zhǎng),再由勾股定理的逆定理得到△ACD為等腰直角三角形,同理可得△ABC為等腰直角三角形,即∠BAC=∠DAC.【詳解】解:如圖,設(shè)正方形每個(gè)網(wǎng)格的邊長(zhǎng)都為1,連接CD、BC,則,,,,為等腰直角三角形,,同理:,,,,為等腰直角三角形,,.故選:C.【考點(diǎn)】本題考查勾股定理的性質(zhì)、勾股定理的逆定理以及等腰直角三角形的判定,解本題的關(guān)鍵要掌握勾股定理及逆定理的基本知識(shí).6、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點(diǎn)】本題考查了勾股定理的應(yīng)用,理解題意,畫出圖形是解題的關(guān)鍵.7、D【解析】【分析】連接OA、OC,由垂徑定理得AC=BC=AB=5寸,連接OA,設(shè)圓的半徑為x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半徑,進(jìn)而直徑可求.【詳解】解:連接OA、OC,如圖:由題意得:C為AB的中點(diǎn),則O、C、D三點(diǎn)共線,OC⊥AB,∴AC=BC=AB=5(寸),設(shè)圓的半徑為x寸,則OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圓材直徑為2×13=26(寸).故選:D【考點(diǎn)】本題主要考查了垂徑定理的應(yīng)用,勾股定理的應(yīng)用,熟練掌握垂徑定理,由勾股定理得出方程是解題的關(guān)鍵.二、填空題1、12米【解析】【分析】設(shè)旗桿的高度是x米,繩子長(zhǎng)為(x+1)米,旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求出x的值,從而求出旗桿的高度.【詳解】解:設(shè)旗桿的高度為米,根據(jù)題意可得:,解得:,答:旗桿的高度為12米.故答案為:12米.【考點(diǎn)】本題考查勾股定理的應(yīng)用,關(guān)鍵看到旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求解.2、【解析】【分析】少走的距離是AC+BC-AB,在直角△ABC中根據(jù)勾股定理求得AB的長(zhǎng)即可.【詳解】解:如圖,∵在中,,∴米,則少走的距離為:米,∵步為米,∴少走了步.故答案為:.【考點(diǎn)】本題考查正確運(yùn)用勾股定理.善于觀察題目的信息,掌握勾股定理是解題的關(guān)鍵.3、【解析】【分析】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,則BE=B′E,連接AG,可證△AB′G≌△ADG,則DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,根據(jù)勾股定理列出方程,可求出BE的值,從而求出CE,最后由三角形面積公式求出△ECG的面積.【詳解】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,BE=B′E,連接AG,如圖,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,則CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根據(jù)勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面積=(cm2)故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,結(jié)合全等的知識(shí)找出題中的線段之間的關(guān)系是本題的解題關(guān)鍵.4、2+2【解析】【分析】地毯的豎直的線段加起來等于BC,水平的線段相加正好等于AC,即地毯的總長(zhǎng)度至少為(AC+BC).【詳解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴AC=m,∴AC+BC=2+2(m).故答案為2+2.【考點(diǎn)】本題主要考查勾股定理的應(yīng)用,解此題的關(guān)鍵在于準(zhǔn)確理解題中地毯的長(zhǎng)度為水平與豎直的線段的和.5、8【解析】【分析】作交的延長(zhǎng)于點(diǎn),在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長(zhǎng)于點(diǎn),則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點(diǎn)】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關(guān)鍵.6、2.5【解析】【分析】首先先過點(diǎn)D作AB的垂直線段DE,根據(jù)勾股定理把BC求出,然后根據(jù)角平分線的性質(zhì)定理得出DE=DC,再根據(jù)ABC的面積等于ACD的面積加上ABD的面積,把CD求出,最后BD的長(zhǎng)度即可求出.【詳解】過點(diǎn)D作DEAB于E,在ABC中,C=,AB=5,AC=3,∴,∵AD平分BAC,∴DE=DC,∵,即,解得CD=1.5,∴BD=4-CD=4-1.5=2.5,故答案為:2.5.【考點(diǎn)】本題考查了勾股定理和角平分線的性質(zhì)定理,正確作出輔助線,根據(jù)面積相等把CD求出是解題的關(guān)鍵.7、20m.【解析】【分析】試題分析:要求登梯的長(zhǎng),需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長(zhǎng)時(shí),借助于勾股定理.【詳解】將圓柱表面按一周半開展開呈長(zhǎng)方形,

∵圓柱高16m,底面周長(zhǎng)8m,設(shè)螺旋形登梯長(zhǎng)為xm,∴x2=(1×8+4)2+162=400,∴登梯至少=20m故答案為:20m【考點(diǎn)】本題考查圓柱形側(cè)面展開圖新問題,涉及勾股定理,掌握按要求將圓柱側(cè)面展開圖形的方法,會(huì)利用圓周,高與對(duì)角線組成直角三角形,用勾股定理解決問題是關(guān)鍵.8、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點(diǎn)O為AB邊的中點(diǎn),∴CO=AB=2.5,故答案為:2.5.【考點(diǎn)】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識(shí),熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.三、解答題1、見解析【解析】【分析】設(shè)斜邊為c,根據(jù)勾股定理即可得出c=,再由三角形的面積公式即可得出結(jié)論.【詳解】證明:設(shè)斜邊為c,根據(jù)勾股定理即可得出c=,∵ab=ch,∴ab=h,即a2b2=a2h2+b2h2,∴=,即.【考點(diǎn)】本題考查的是勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方是解答此題的關(guān)鍵.2、見解析【解析】【分析】根據(jù)大正方形的面積=小正方形的面積+4個(gè)直角三角形的面積證明即可【詳解】解:由題意得大正方形面積,小正方形面積,4個(gè)小直角三角形的面積,∵大正方形的面積=小正方形的面積+4個(gè)直角三角形的面積,∴.【考點(diǎn)】本題主要考查了勾股定理的證明,解題的關(guān)鍵在于能夠根據(jù)題意知曉大正方形的面積=小正方形的面積+4個(gè)直角三角形的面積.3、(1)是直角三角形,理由見解析;(2)150°.【解析】【分析】(1)求出DE,CE,CD長(zhǎng),根據(jù)勾股逆定理可知的形狀;(2)由等邊三角形角的性質(zhì)和全等三角形角的性質(zhì)可知的度數(shù)【詳解】解:(1)是直角三角形理由如下:繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,,,,是等邊三角形,,又,,是直角三角形.(2)由(1)得,,是等邊三角形,,,.【考點(diǎn)】本題是三角形綜合題,主要考查了全等三角形的證明和性質(zhì)、等邊三角形的性質(zhì)和判定、勾股逆定理,熟練應(yīng)用等邊三角形的性質(zhì)求線段長(zhǎng)及角度是解題的關(guān)鍵.4、△ABC為直角三角形或等腰三角形【解析】【分析】首先把等式的左右兩邊分解因式,再考慮等式成立的條件,從而判斷△ABC的形狀.【詳解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC為直角三角形或等腰三角形.5、(1)見解析(2)①見解析;②見解析;③BG2+HG2=4AE2.【解析】【分析】(1)證△ADE≌△CDF(SAS),得∠ADE=∠CDF,再證∠EDF=90°,即可得出結(jié)論;(2)①依題意,補(bǔ)全圖形即可;②由直角三角形斜邊上的中線性質(zhì)得DG=EF,BG=EF,即可得出結(jié)論;③先證△DEF是等腰直角三角形,得∠DEG=45°,再證DG⊥EF,DG=EF=EG,BG=EF=EG=FG,得∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,然后證△CDH≌△CDF(ASA),得CH=CF,再由勾股定理即可求解.(1)證明:∵四邊形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,即∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DE⊥DF;(2)①解:依題意,補(bǔ)全圖形如圖所示:②證明:由(1)可知,△DEF和△BEF都是直角三角形,∵G是EF的中點(diǎn),∴DG=EF,BG=EF,∴BG=DG;③BG2+HG2=4AE2,證明:由(1)可知,△ADE≌△CDF,DE⊥DF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DEG=45°,∵G為EF的中點(diǎn),∴DG⊥EF,DG=EF=EG,BG=EF=EG=FG,∴∠EGD=∠HGF=∠DGF=90°,∠GDF=45°,∠EDG=∠DEG=45°,∠G

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論