長春師范高等??茖W校《廣告美術(shù)基礎(chǔ)》2024-2025學年第一學期期末試卷_第1頁
長春師范高等??茖W校《廣告美術(shù)基礎(chǔ)》2024-2025學年第一學期期末試卷_第2頁
長春師范高等??茖W校《廣告美術(shù)基礎(chǔ)》2024-2025學年第一學期期末試卷_第3頁
長春師范高等??茖W?!稄V告美術(shù)基礎(chǔ)》2024-2025學年第一學期期末試卷_第4頁
長春師范高等專科學?!稄V告美術(shù)基礎(chǔ)》2024-2025學年第一學期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共2頁長春師范高等??茖W?!稄V告美術(shù)基礎(chǔ)》2024-2025學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像分類是計算機視覺的基礎(chǔ)任務(wù)之一。假設(shè)要對一組動物圖片進行分類,區(qū)分貓、狗、兔子等。以下關(guān)于圖像分類方法的描述,哪一項是不準確的?()A.傳統(tǒng)的機器學習方法,如支持向量機(SVM),也可以用于圖像分類任務(wù)B.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類中取得了顯著的效果C.圖像分類只需要考慮圖像的內(nèi)容,不需要考慮圖像的拍攝角度和背景等因素D.可以通過數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、裁剪、翻轉(zhuǎn)等,增加訓練數(shù)據(jù)的多樣性2、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時保持可接受的視覺質(zhì)量。假設(shè)我們需要在網(wǎng)絡(luò)上傳輸大量的圖像,以下哪種圖像壓縮標準能夠在保證較高壓縮比的同時,提供較好的圖像質(zhì)量?()A.JPEGB.PNGC.GIFD.BMP3、在一個基于計算機視覺的智能零售系統(tǒng)中,需要對顧客的購物行為進行分析,如拿起商品、放回商品等動作的識別。以下哪種技術(shù)在動作識別方面可能發(fā)揮重要作用?()A.光流分析B.目標跟蹤C.動作捕捉D.以上都是4、計算機視覺在虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)中的應(yīng)用可以提供更沉浸式的體驗。假設(shè)要在VR環(huán)境中實時跟蹤用戶的頭部運動并相應(yīng)地更新場景,以下關(guān)于VR/AR計算機視覺應(yīng)用的描述,正確的是:()A.簡單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運動跟蹤需求B.計算機視覺在VR/AR中的應(yīng)用主要關(guān)注圖像生成,而不是跟蹤和定位C.結(jié)合視覺特征提取和深度學習的頭部運動跟蹤算法可以實現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對計算機視覺算法的性能沒有影響5、在計算機視覺的目標跟蹤任務(wù)中,需要在視頻序列中持續(xù)跟蹤特定的目標。假設(shè)我們要跟蹤一個在人群中快速移動的人物,以下哪種目標跟蹤算法能夠更好地處理目標的外觀變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學習的跟蹤算法,如Siamese網(wǎng)絡(luò)D.基于均值漂移的跟蹤算法6、計算機視覺在衛(wèi)星遙感圖像分析中的應(yīng)用可以幫助監(jiān)測地球環(huán)境和資源。假設(shè)要通過衛(wèi)星圖像分析森林的覆蓋面積變化。以下關(guān)于計算機視覺在衛(wèi)星遙感中的描述,哪一項是不準確的?()A.可以通過圖像分類和分割技術(shù)區(qū)分森林、草地和建筑物等不同地物類型B.能夠?qū)Χ鄷r相的衛(wèi)星圖像進行比較,監(jiān)測森林的生長和砍伐情況C.計算機視覺在衛(wèi)星遙感中的應(yīng)用不受衛(wèi)星圖像的分辨率和光譜信息的限制D.可以結(jié)合地理信息系統(tǒng)(GIS)數(shù)據(jù),進行更深入的空間分析和決策支持7、在進行計算機視覺的三維重建時,需要從多個視角的圖像中恢復物體的三維形狀和結(jié)構(gòu)。假設(shè)要對一個復雜的古建筑進行三維重建,圖像采集存在視角偏差和部分遮擋。以下哪種三維重建方法在處理這種不完整和有噪聲的數(shù)據(jù)時效果較好?()A.基于立體視覺的重建B.基于運動恢復結(jié)構(gòu)(SfM)的重建C.基于激光掃描的重建D.基于深度學習的重建8、計算機視覺中的視覺跟蹤算法常用于跟蹤運動目標。假設(shè)要跟蹤一只在森林中奔跑的動物,以下關(guān)于視覺跟蹤算法的描述,哪一項是不正確的?()A.基于模型的跟蹤算法通過建立目標的模型來預(yù)測其位置和狀態(tài)B.基于特征的跟蹤算法依賴于目標的顯著特征進行跟蹤C.視覺跟蹤算法在目標發(fā)生快速變形或完全遮擋時仍能保持準確跟蹤D.結(jié)合多種線索和信息的融合跟蹤算法可以提高跟蹤的穩(wěn)定性和可靠性9、計算機視覺在自動駕駛領(lǐng)域有著至關(guān)重要的應(yīng)用。假設(shè)一輛自動駕駛汽車正在道路上行駛,需要識別各種交通標志和障礙物。以下關(guān)于自動駕駛中計算機視覺任務(wù)的描述,正確的是:()A.只需對前方物體進行簡單的圖像分類,就能實現(xiàn)安全的自動駕駛B.準確的目標檢測和語義分割對于理解復雜的道路場景至關(guān)重要C.計算機視覺在自動駕駛中作用不大,主要依靠其他傳感器如雷達D.對于交通標志的識別,顏色信息比形狀和圖案信息更重要10、在計算機視覺的圖像配準任務(wù)中,假設(shè)要將兩張拍攝角度和時間不同的同一物體的圖像進行精確對齊。這兩張圖像可能存在縮放、旋轉(zhuǎn)和平移等差異。以下哪種配準方法可能更適合處理這種情況?()A.基于特征點匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進行任何配準操作C.基于圖像灰度值的配準方法,計算灰度差異D.隨機選擇圖像中的點進行匹配11、在計算機視覺的三維重建任務(wù)中,假設(shè)要從一組二維圖像恢復出物體的三維結(jié)構(gòu)。以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺的方法需要多視角的圖像,并且對相機的標定精度要求不高B.結(jié)構(gòu)光方法能夠快速準確地獲取物體表面的三維信息,但對環(huán)境光敏感C.從運動中恢復結(jié)構(gòu)(SfM)方法只適用于靜態(tài)場景,無法處理動態(tài)物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型12、在計算機視覺的圖像修復任務(wù)中,恢復圖像中缺失或損壞的部分。假設(shè)要修復一張老照片中缺失的部分,以下關(guān)于圖像修復方法的描述,正確的是:()A.基于紋理合成的圖像修復方法能夠完美恢復復雜的結(jié)構(gòu)和細節(jié)B.深度學習中的自編碼器在圖像修復中無法學習到有效的特征表示C.圖像修復的結(jié)果不受缺失區(qū)域的大小和形狀的影響D.結(jié)合先驗知識和上下文信息的深度學習方法可以產(chǎn)生更合理和自然的修復效果13、在計算機視覺的目標計數(shù)任務(wù)中,統(tǒng)計圖像或視頻中目標的數(shù)量。假設(shè)要統(tǒng)計一個果園中蘋果的數(shù)量,以下關(guān)于目標計數(shù)方法的描述,哪一項是不正確的?()A.可以基于圖像分割和對象識別的方法,先分割出每個蘋果,然后進行計數(shù)B.利用深度學習中的回歸模型直接預(yù)測蘋果的數(shù)量C.目標計數(shù)不受蘋果的大小、形狀和分布的影響,任何情況下都能準確計數(shù)D.結(jié)合多視角圖像或視頻序列可以提高目標計數(shù)的準確性14、計算機視覺中的圖像增強技術(shù)可以改善圖像質(zhì)量。假設(shè)要對一張低光照條件下拍攝的圖像進行增強,以下關(guān)于圖像增強方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強圖像對比度C.基于深度學習的圖像增強方法能夠自適應(yīng)地學習到適合的增強策略D.圖像增強不會改變圖像的原始信息和內(nèi)容15、圖像分類是計算機視覺中的常見任務(wù)之一。對于圖像分類模型的訓練,以下說法錯誤的是()A.需要大量有標注的圖像數(shù)據(jù)來學習不同類別的特征B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色C.模型的訓練過程是不斷調(diào)整參數(shù)以最小化預(yù)測誤差的過程D.圖像分類模型一旦訓練完成,就無法再對新的類別進行學習和分類二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在工業(yè)檢測中的應(yīng)用優(yōu)勢。2、(本題5分)解釋計算機視覺在車載導航中的作用。3、(本題5分)計算機視覺中如何進行車輛類型識別?4、(本題5分)解釋計算機視覺在通信行業(yè)中的信號處理和優(yōu)化。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)利用圖像配準技術(shù),將兩張有偏差的醫(yī)學圖像進行精確對齊。2、(本題5分)基于計算機視覺的智能公交站臺系統(tǒng),實時顯示公交車的到站信息和車內(nèi)擁擠程度。3、(本題5分)基于深度學習,實現(xiàn)對乒乓球比賽中擦邊球的檢測。4、(本題5分)利用圖像分割技術(shù),從航拍圖像中分割出道路。5、(本題5分)在物流運輸中,使用計算機視覺檢測貨物的包裝是否完好。四、分析題(本大題共4個小題,共40分)1、(本題10分)分析某家居用品品牌的產(chǎn)品使用說明書設(shè)計,觀察其如何通過簡潔明了的圖示和文字,指導用戶正確使用產(chǎn)品。2、(本題10分)研究某品牌的活動邀請函設(shè)計

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論