難點詳解廣東茂名市高州中學(xué)7年級數(shù)學(xué)下冊第四章三角形定向測評試卷(含答案詳解版)_第1頁
難點詳解廣東茂名市高州中學(xué)7年級數(shù)學(xué)下冊第四章三角形定向測評試卷(含答案詳解版)_第2頁
難點詳解廣東茂名市高州中學(xué)7年級數(shù)學(xué)下冊第四章三角形定向測評試卷(含答案詳解版)_第3頁
難點詳解廣東茂名市高州中學(xué)7年級數(shù)學(xué)下冊第四章三角形定向測評試卷(含答案詳解版)_第4頁
難點詳解廣東茂名市高州中學(xué)7年級數(shù)學(xué)下冊第四章三角形定向測評試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東茂名市高州中學(xué)7年級數(shù)學(xué)下冊第四章三角形定向測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,已知△ABC,下面甲、乙、丙、丁四個三角形中,與△ABC全等的是()A. B.C. D.2、如圖,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列條件中的一個仍無法證明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE3、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.56114、如果一個三角形的兩邊長分別為5cm和8cm,則第三邊長可能是()A.2cm B.3cm C.12cm D.13cm5、如圖,若MB=ND,∠MBA=∠NDC,下列條件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N6、一個三角形的兩邊長分別為5和2,若該三角形的第三邊的長為偶數(shù),則該三角形的第三邊的長為()A.6 B.8 C.6或8 D.4或67、下列各組線段中,能構(gòu)成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、68、如圖,∠BAD=90°,AC平分∠BAD,CB=CD,則∠B與∠ADC滿足的數(shù)量關(guān)系為()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180° D.∠B+∠ADC=90°9、在△ABC中,若AB=3,BC=4,且周長為奇數(shù),則第三邊AC的長可以是()A.1 B.3 C.4 D.510、如圖,ABC≌DEF,點B、E、C、F在同一直線上,若BC=7,EC=4,則CF的長是()A.2 B.3 C.4 D.7第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在中,,一條線段,P,Q兩點分別在線段和的垂線上移動,若以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,則的長為_________.2、某段河流的兩岸是平行的,數(shù)學(xué)興趣小組在老師帶領(lǐng)下不用涉水過河就測得河的寬度,他們是這樣做的:①在河流的一條岸邊B點,選對岸正對的一棵樹A;②沿河岸直走20米有一樹C,繼續(xù)前行20米到達(dá)D處;③從D處沿河岸垂直的方向行走,當(dāng)?shù)竭_(dá)A樹正好被C樹遮擋住的E處停止行走;④測得DE的長為5米;則河的寬度為_____米.3、如圖,ABDC,ADBC,AC與BD交于點O,EF經(jīng)過點O,與AD、BC分別交于點E和F,則圖中共有___對全等三角形.4、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點A順時針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_____.5、如圖,一把直尺的一邊緣經(jīng)過直角三角形的直角頂點,交斜邊于點;直尺的另一邊緣分別交、于點、,若,,則___________度.6、如圖,在中,,點D,E在邊BC上,,若,,則CE的長為______.7、等腰三角形的一條邊長為4cm,另一條邊長為6cm,則它的周長是________.8、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按圖中所示位置擺放,點D在邊AB上,EFBC,則∠ADF的度數(shù)為_____度.9、如圖,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面積為58,△ADC的面積為30,則△ABD的面積等于______.10、兩角和它們的夾邊分別相等的兩個三角形全等(可以簡寫成_____).三、解答題(6小題,每小題10分,共計60分)1、在中,,是射線上一點,點在的右側(cè),線段,且,連結(jié).(1)如圖1,點在線段上,求證:.(2)如圖2,點在線段延長線上,判斷與的數(shù)量關(guān)系并說明理由.2、如圖,點B、F、C、E在同一條直線上,∠B=∠E,AB=DE,BF=CE.求證:AC=DF.3、如圖,點D在AB上,E在AC上,AB=AC,∠B=∠C,求證:AD=AE.4、如圖,在長方形ABCD中,AD=3,DC=5,動點M從A點出發(fā)沿線段AD—DC以每秒1個單位長度的速度向終點C運動;動點N同時從C點出發(fā)沿線段CD—DA以每秒3個單位長度的速度向終點A運動.ME⊥PQ于點E,NF⊥PQ于點F,設(shè)運動的時間為秒.(1)在運動過程中當(dāng)M、N兩點相遇時,求t的值.(2)在整個運動過程中,求DM的長.(用含t的代數(shù)式表示)(3)當(dāng)DEM與DFN全等時,請直接寫出所有滿足條件的DN的長.5、一個零件形狀如圖所示,按規(guī)定應(yīng)等于75°,和應(yīng)分別是18°和22°,某質(zhì)檢員測得,就斷定這個零件不合格,請你運用三角形的有關(guān)知識說明零件不合格的理由.6、如圖1,AM為△ABC的BC邊的中線,點P為AM上一點,連接PB.(1)若P為線段AM的中點.①設(shè)△ABP的面積為S1,△ABC的面積為S,求的值;②已知AB=5,AC=3,設(shè)AP=x,求x的取值范圍.(2)如圖2,若AC=BP,求證:∠BPM=∠CAM.-參考答案-一、單選題1、B【分析】根據(jù)三角形全等的判定定理(定理和定理)即可得.【詳解】解:A、中,長為的兩邊的夾角等于,則此項不滿足定理,與不全等,不符題意;B、此項滿足定理,與全等,符合題意;C、中,長為的兩邊的夾角等于,則此項不滿足定理,與不全等,不符題意;D、中,角度為的夾邊長為,則此項不滿足定理,與不全等,不符題意;故選:B.【點睛】本題考查了三角形全等的判定定理,熟練掌握三角形全等的判定方法是解題關(guān)鍵.2、A【分析】根據(jù)AF=DC求出AC=DF,再根據(jù)全等三角形的判定定理逐個判斷即可.【詳解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本選項符合題意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本選項不符合題意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本選項不符合題意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本選項不符合題意;故選:A.【點睛】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.3、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對各選項分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項不符合題意;C.∵5+6>10,∴能組成三角形,故本選項符合題意;D.∵5+6=11,∴不能組成三角形,故本選項不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關(guān)鍵.4、C【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊可求得結(jié)果【詳解】解:設(shè)第三邊長為c,由題可知,即,所以第三邊可能的結(jié)果為12cm故選C【點睛】本題主要考查了三角形的性質(zhì)中三角形的三邊關(guān)系知識點5、A【分析】根據(jù)兩個三角形全等的判定定理,有AAS、SSS、ASA、SAS四種.逐條驗證.【詳解】解:A、根據(jù)條件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A選項符合題意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B選項不符合題意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C選項不符合題意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D選項不符合題意.故選:A.【點睛】本題重點考查了三角形全等的判定定理,兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本題是一道較為簡單的題目.6、D【分析】根據(jù)三角形兩邊之和大于第三邊確定第三邊的范圍,根據(jù)題意計算即可.【詳解】解:設(shè)三角形的第三邊長為x,則5﹣2<x<5+2,即3<x<7,∵三角形的第三邊是偶數(shù),∴x=4或6,故選:D.【點睛】本題考查了三角形三邊關(guān)系,在一個三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.7、C【分析】根據(jù)三角形的三邊關(guān)系定理逐項判斷即可得.【詳解】解:三角形的三邊關(guān)系定理:任意兩邊之和大于第三邊.A、,不能構(gòu)成三角形,此項不符題意;B、,不能構(gòu)成三角形,此項不符題意;C、,能構(gòu)成三角形,此項符合題意;D、,不能構(gòu)成三角形,此項不符題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握三角形的三邊關(guān)系定理是解題關(guān)鍵.8、C【分析】由題意在射線AD上截取AE=AB,連接CE,根據(jù)SAS不難證得△ABC≌△AEC,從而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,證得∠B=∠CDE,即可得出結(jié)果.【詳解】解:在射線AD上截取AE=AB,連接CE,如圖所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC與△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故選:C.【點睛】本題主要考查全等三角形的判定與性質(zhì),解答的關(guān)鍵是作出適當(dāng)?shù)妮o助線AE,CE.9、C【分析】先求解的取值范圍,再利用周長為奇數(shù),可得為偶數(shù),從而可得答案.【詳解】解:AB=3,BC=4,即△ABC周長為奇數(shù),而為偶數(shù),或或不符合題意,符合題意;故選C【點睛】本題考查的是三角形三邊的關(guān)系,掌握“三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解本題的關(guān)鍵.10、B【分析】根據(jù)全等三角形的性質(zhì)可得,根據(jù)即可求得答案.【詳解】解:ABC≌DEF,點B、E、C、F在同一直線上,BC=7,EC=4,故選B【點睛】本題考查了全等三角形的性質(zhì),掌握全等三角形的性質(zhì)是解題的關(guān)鍵.二、填空題1、6cm或12cm【分析】先根據(jù)題意得到∠BCA=∠PAQ=90°,則以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,由此利用全等三角形的性質(zhì)求解即可.【詳解】解:∵AX是AC的垂線,∴∠BCA=∠PAQ=90°,∴以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,當(dāng)△ACB≌△QAP,∴;當(dāng)△ACB≌△PAQ,∴,故答案為:6cm或12cm.【點睛】本題主要考查了全等三角形的性質(zhì),熟知全等三角形的性質(zhì)是解題的關(guān)鍵.2、5【分析】將題目中的實際問題轉(zhuǎn)化為數(shù)學(xué)問題,利用全等三角形的判定方法證得兩個三角形全等即可得出答案.【詳解】解:由題意知,在和中,,,∴,即河的寬度是5米,故答案為:5.【點睛】題目主要考查全等三角形的應(yīng)用,熟練應(yīng)用全等三角形的判定定理和性質(zhì)是解題關(guān)鍵.3、6【分析】根據(jù)平行線的性質(zhì)得出∠DAC=∠BCA,∠DCA=∠BAC,根據(jù)全等三角形的判定定理ASA可以推出△ABC≌△CDA,△ABD≌△CDB,根據(jù)全等三角形的性質(zhì)得出AD=CB,AB=CD根據(jù)全等三角形的判定定理AAS推出△AOB≌△COD,△AOD≌△COB,根據(jù)全等三角形的性質(zhì)定理得出AO=CO,BO=DO,根據(jù)全等三角形的判定定理ASA推出△AOE≌△COF,△DOE≌△BOF即可.【詳解】解:∵ABDC,ADBC,∴∠DAC=∠BCA,∠DCA=∠BAC,在△ABC和△CDA中,∴△ABC≌△CDA(ASA),∴AD=CB,AB=CD,同理△ABD≌△CDB,在△AOB和△COD中,∴△AOB≌△COD(AAS),同理△AOD≌△COB,∴AO=CO,BO=DO,在△AOE和△COF中,∴△AOE≌△COF同理△DOE≌△BOF.【點睛】本題考查了全等三角形的判定定理和性質(zhì)定理,平行線的性質(zhì)等知識點,能熟記全等三角形的判定定理和性質(zhì)定理是解此題的關(guān)鍵,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS兩直角三角形全等還有HL等,②全等三角形的對應(yīng)邊相等,對應(yīng)角相等.4、【分析】根據(jù)題意過點B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關(guān)鍵.5、20【分析】利用平行線的性質(zhì)求出∠1,再利用三角形外角的性質(zhì)求出∠DCB即可.【詳解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20o,故答案為:20.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識.6、5【分析】由題意易得,然后可證,則有,進(jìn)而問題可求解.【詳解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案為5.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.7、16cm或14cm【分析】根據(jù)題意分腰為6cm和底為6cm兩種情況,分別求出即可.【詳解】解:①當(dāng)腰為6cm時,它的周長為6+6+4=16(cm);②當(dāng)?shù)诪?cm時,它的周長為6+4+4=14(cm);故答案為:16cm或14cm.【點睛】本題考查了等腰三角形的性質(zhì)的應(yīng)用,注意:等腰三角形的兩腰相等,注意分類討論.8、75【分析】設(shè)CB與ED交點為G,依據(jù)平行線的性質(zhì),即可得到∠CGD的度數(shù),再根據(jù)三角形外角的性質(zhì),得到∠BDE的度數(shù),即可得∠ADF的度數(shù).【詳解】如圖所示,設(shè)CB與ED交點為G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案為:75.【點睛】本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì),解題時注意:兩條平行線被第三條直線所截,同位角相等.9、28【分析】延長交于,由證明,得出,得出,進(jìn)而得出,即可得出結(jié)果.【詳解】如圖所示,延長交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:28.【點睛】此題考查全等三角形的判定與性質(zhì),三角形面積的計算,證明三角形全等得出是解題關(guān)鍵.10、角邊角或【分析】根據(jù)全等三角形的判定定理得出即可.【詳解】解答:解:兩角和它們的夾邊分別相等的兩個三角形全等,簡寫成角邊角或ASA,故答案為:角邊角或ASA.【點睛】本題考查了全等三角形的判定定理,掌握全等三角形的判定定理是解題的關(guān)鍵.三、解答題1、(1)證明見解析;(2),理由見解析.【分析】(1)根據(jù)證明與全等,進(jìn)而利用全等三角形的性質(zhì)解答即可;(2)根據(jù)證明與全等,進(jìn)而利用全等三角形的性質(zhì)解答即可.【詳解】證明:(1),,在與中,,,,,,即:.(2),理由:,,在與中,,,.,,.【點睛】本題主要考查三角形全等的證明,合理利用已知條件進(jìn)行證明是此類問題的關(guān)鍵.2、見解析【分析】根據(jù)題意得出BC=EF,即可利用SAS證明△ABC和△DEF,再利用全等三角形的性質(zhì)即可得解.【詳解】證明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴AC=DF.【點睛】本題考查了全等三角形的判定與性質(zhì),利用SAS證明△ABC≌△DEF是解題的關(guān)鍵.3、見解析【分析】根據(jù)全等三角形的判定定理ASA可以證得△ACD≌△ABE,然后由“全等三角形的對應(yīng)邊相等”即可證得結(jié)論.【詳解】證明:在△ABE與△ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的對應(yīng)邊相等).【點睛】本題考查了全等三角形的判定與性質(zhì).在應(yīng)用全等三角形的判定時,要注意三角形間的公共邊和公共角.4、(1)2;(2)當(dāng)0≤t≤3時,DM=3-t,當(dāng)3<t≤8時,DM=t-3;(3)2或1【分析】(1)根據(jù)題意得:,解得:,即可求解;(2)根據(jù)題意得:當(dāng)0≤t≤3時,AM=t,則DM=3-t,當(dāng)3<t≤8時,DM=t-3,即可求解;(3)根據(jù)ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME=∠FDN,從而得到當(dāng)DEM與DFN全等時,DM=DN,根據(jù)題意可得M到達(dá)點D時,,M到達(dá)點C時,,N到達(dá)點D時,,N到達(dá)點A時,,然后分兩種情況:當(dāng)時和當(dāng)時,即可求解.【詳解】解:(1)根據(jù)題意得:,解得:,即在運動過程中當(dāng)M、N兩點相遇時,t的值為2;(2)根據(jù)題意得:當(dāng)0≤t≤3時,AM=t,則DM=3-t,當(dāng)3<t≤8時,DM=t-3;(3)∵M(jìn)E⊥PQ,NF⊥PQ,∴∠DEM=∠DFN=90°,∴∠EDM+∠DME=90°,∵∠ADC=90°,∴∠EDM+∠FDN=90°,∴∠DME=∠FDN,∴當(dāng)DEM與DFN全等時,DM=DN,∵M(jìn)到達(dá)點D時,,M到達(dá)點C時,,N到達(dá)點D時,,N到達(dá)點A時,,當(dāng)時,DM=3-t,CN=3t,則DN=5-3t,∴3-t=5-3t,解得:t=1,∴此時DN=5-3t=2,當(dāng)時,DM=3-t,DN=3t-5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論