難點詳解北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第五章生活中的軸對稱章節(jié)練習(xí)試題(解析卷)_第1頁
難點詳解北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第五章生活中的軸對稱章節(jié)練習(xí)試題(解析卷)_第2頁
難點詳解北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第五章生活中的軸對稱章節(jié)練習(xí)試題(解析卷)_第3頁
難點詳解北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第五章生活中的軸對稱章節(jié)練習(xí)試題(解析卷)_第4頁
難點詳解北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第五章生活中的軸對稱章節(jié)練習(xí)試題(解析卷)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第五章生活中的軸對稱章節(jié)練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列圖形不是軸對稱圖形的是()A. B. C. D.2、如圖,四邊形ABCD是軸對稱圖形,直線AC是它的對稱軸,若∠BAC=85°,∠B=25°,則∠BCD的大小為()A.150° B.140° C.130° D.120°3、下列各圖中不是軸對稱圖形的是()A. B.C. D.4、下列圖案是軸對稱圖形的是()A. B. C. D.5、北京2022年冬奧會會徽“冬夢”正式發(fā)布.以下是參選的會徽設(shè)計的一部分圖形,其中是軸對稱圖形的是()A. B. C. D.6、如圖,北京2022年冬奧會會徽,是將蒙漢兩種文字的“冬”字融為一體而成.組成會徽的四個圖案中是軸對稱圖形的是()A. B. C. D.7、如圖,將一張長方形紙帶沿EF折疊,點C、D的對應(yīng)點分別為C'、D'.若∠DEF=α,用含α的式子可以將∠C'FG表示為()A.2α B.90°+α C.180°﹣α D.180°﹣2α8、如圖,△ABC與△A′B′C′關(guān)于直線MN對稱,BB′交MN于點O,則下列結(jié)論不一定正確的是()A.AC=A′C′ B.BO=B′O C.AA′⊥MN D.ABB′C′9、在一些美術(shù)字中,有的漢字是軸對稱圖形.下面4個漢字中,可以看作是軸對稱圖形的是()A.吉 B.祥 C.如 D.意10、如圖,在中,,,是上一點,將沿折疊,使點落在邊上的處,則等于()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、在線段?角?圓?長方形?梯形?三角形?等邊三角形中,是軸對稱圖形的有__________個.2、下列圖形中,一定是軸對稱圖形的有______________(填序號).(1)線段;(2)三角形;(3)圓;(4)正方形;(5)梯形3、如圖,長方形紙片ABCD中AD∥BC,AB∥CD,∠A=90°,將紙片沿EF折疊,使頂點C、D分別落在點C'、D'處,C'E交AF于點G.若∠CEF=68°,則么∠GFD'=______°.4、小聰在研究題目“如圖,在等腰三角形ABC中,,,的平分線與AB的垂直平分線OD交于點O,點C沿直線EF折疊后與點O重合,你能得出那些結(jié)論?”時,發(fā)現(xiàn)了下面三個結(jié)論:①;②圖中沒有60°的角;③D、O、C三點共線.請你直接寫出其中正確的結(jié)論序號:______5、如圖,將一張長方形紙片ABCD沿EF折疊,點D、C分別落在點D′、C′的位置處,若∠1=58°,則∠EFB的度數(shù)是______.6、在“線段,角,相交線,等腰三角形”這四個圖形中,是軸對稱圖形的有___個.7、如圖,在RtABC中,∠ACB=90°,AB=4,點D、E分別在AB、AC上,且AD=.連接DE,將ADE沿DE翻折,使點A的對應(yīng)點F落在BC的延長線上,連接FD,且FD交AC于點G.若FD平分∠EFB,則∠ADE=___°,F(xiàn)G=___.8、如圖,點P為∠AOB內(nèi)一點,分別作出P點關(guān)于OA、OB的對稱點P1,P2,連接P1P2交OA于M,交OB于N,P1P2=18,則△PMN的周長為______.9、如圖,和關(guān)于直線對稱,若,則圖中陰影部分的面積為___.10、如圖,長方形紙片,點,分別在邊,上,將長方形紙片沿著折疊,點落在點處,交于點.若比的4倍多12°,則______°.三、解答題(6小題,每小題10分,共計60分)1、如圖,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,C點表示數(shù)c,已知數(shù)b是最小的正整數(shù),且a、c滿足.(1)a=_____,b=______,c=______;(2)若將數(shù)軸折疊,使得點A與點C重合,則點B與數(shù)______表示的點重合;(3)在(1)的條件下,數(shù)軸上的A,B,M表示的數(shù)為a,b,y,是否存在點M,使得點M到點A,點B的距離之和為6?若存在,請求出y的值;若不存在,請說明理由.(4)點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,求AB、AC、BC的長(用含t的式子表示).2、綜合與應(yīng)用:根據(jù)下面給出的數(shù)軸,解答下面的問題:(1)請你根據(jù)圖中A,B兩點的位置,分別寫出它們所表示的有理數(shù):點A表示__________,點B表示_______.(2)觀察數(shù)軸,與點A的距離為4的點表示的數(shù)是_________和___________.(3)若將數(shù)軸折疊,使得點A與表示的點重合,則點B與數(shù)_________表示的點重合.(4)若數(shù)軸上M,N兩點之間的距離為2020(點M在點N的左側(cè)),且M,N兩點經(jīng)過(3)中的折疊后互相重合,則M、N兩點表示的數(shù)分別是什么?3、如圖,在△ABC中,AB=AC,D是BC的中點,DE⊥AB,DF⊥AC,E,F(xiàn)為垂足.求證:DE=DF.4、已知,如圖,等腰直角△ABC中,∠ACB=90°,CA=CB,過點C的直線CH和AC的夾角∠ACH=α,請按要求完成下列各題:(1)請按要求作圖:作出點A關(guān)于直線CH的軸對稱點D,連接AD、BD、CD,其中BD交直線CH于點E,連接AE;(2)請問∠ADB的大小是否會隨著α的改變而改變?如果改變,請用含α的式子表示∠ADB;如果不變,請求出∠ADB的大?。?)請證明△ACE的面積和△BCE的面積滿足:.5、如圖所示的每幅圖形中的兩個圖案是軸對稱的嗎?如果是,指出它們的對稱軸,并找出一對對稱點.6、如圖,將△ABC三個角分別沿DE、HG、EF翻折,三個頂點均落在點O處.求∠1+∠2的度數(shù).-參考答案-一、單選題1、B【分析】根據(jù)如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸進(jìn)行分析即可.【詳解】選項A、C、D能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形,選項B不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形,故選:B.【點睛】此題主要考查了軸對稱圖形,關(guān)鍵是正確確定對稱軸位置.2、B【分析】根據(jù)三角形內(nèi)角和的性質(zhì)可求得,再根據(jù)對稱的性質(zhì)可得,即可求解.【詳解】解:根據(jù)三角形內(nèi)角和的性質(zhì)可求得由軸對稱圖形的性質(zhì)可得,∴故選:B【點睛】此題考查了三角形內(nèi)角和的性質(zhì),軸對稱圖形的性質(zhì),解題的關(guān)鍵是掌握并利用相關(guān)基本性質(zhì)進(jìn)行求解.3、B【分析】根據(jù)關(guān)于某條直線對稱的圖形叫軸對稱圖形,進(jìn)而判斷得出即可.【詳解】解:A、等邊三角形是軸對稱圖形,不合題意;B、平行四邊形不是軸對稱圖形,符合題意;C、正方形是軸對稱圖形,不符合題意;D、圓是軸對稱圖形,不合題意;故選:B.【點睛】本題考查了軸對稱圖形,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.4、C【分析】根據(jù)軸對稱圖形的定義逐項識別即可,一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】解:選項A、B、D均不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形,選項C能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形,故選:C.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關(guān)鍵.5、A【分析】利用軸對稱圖形的概念進(jìn)行解答即可.【詳解】解:A.是軸對稱圖形,故此選項符合題意;B.不是軸對稱圖形,故此選項不合題意;C.不是軸對稱圖形,故此選項不合題意;D.不是軸對稱圖形,故此選項不合題意;故選:A.【點睛】本題主要是考查了軸對稱圖形的概念,判別軸對稱圖形的關(guān)鍵是找對稱軸.6、D【分析】根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A不是軸對稱圖形,故本選項不合題意B不是軸對稱圖形,故本選項不合題意C不是軸對稱圖形,故本選項不合題意D是軸對稱圖形,故本選項符合題意故選D【點睛】本題考察了軸對稱圖形的概念,熟練掌握應(yīng)用軸對稱圖形的定義解決問題是關(guān)鍵點.7、D【分析】由平行線的性質(zhì)得,,由折疊的性質(zhì)得,計算即可得出答案.【詳解】∵四邊形ABCD是矩形,∴,∴,,∵長方形紙帶沿EF折疊,∴,∴.故選:D.【點睛】本題考查平行線的性質(zhì)與折疊的性質(zhì),掌握平行線的性質(zhì)以及折疊的性質(zhì)是解題的關(guān)鍵.8、D【分析】根據(jù)軸對稱的性質(zhì)解答.【詳解】解:∵△ABC與△A′B′C′關(guān)于直線MN對稱,BB′交MN于點O,∴AC=A′C′,BO=B′O,AA′⊥MN,但ABB′C′不正確,故選:D.【點睛】此題考查了軸對稱的性質(zhì):軸對稱兩個圖形的對應(yīng)邊相等,對應(yīng)角相等,熟記性質(zhì)是解題的關(guān)鍵.9、A【分析】根據(jù)軸對稱的定義去判斷即可.【詳解】∵吉是軸對稱圖形,∴A符合題意;∵祥不是軸對稱圖形,∴B不符合題意;∵如不是軸對稱圖形,∴C不符合題意;∵意不是軸對稱圖形,∴D不符合題意;故選A.【點睛】本題考查了軸對稱圖形,熟練掌握軸對稱圖形的定義即一個圖形沿著某條直線折疊,直線兩旁的圖形能完全重合,是解題的關(guān)鍵.10、D【分析】先根據(jù)三角形內(nèi)角和定理求出∠B的度數(shù),再由圖形翻折變換的性質(zhì)得出∠CED的度數(shù),再由三角形外角的性質(zhì)即可得出結(jié)論.【詳解】解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDE由△CDB折疊而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED-∠A=65°-25°=40°.故選:D.【點睛】本題考查了三角形內(nèi)角和定理,翻折變換的性質(zhì),根據(jù)題意得出∠ADE=∠CED-∠A是解題關(guān)鍵.二、填空題1、5【分析】根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據(jù)此作答.【詳解】解:線段的垂直平分線所在的直線是對稱軸,是軸對稱圖形,符合題意;角的平分線所在直線就是對稱軸,是軸對稱圖形,符合題意;圓有無數(shù)條對稱軸,是軸對稱圖形,符合題意;長方形有二條對稱軸,是軸對稱圖形,符合題意;梯形不一定是軸對稱圖形,不符合題意;三角形不一定是軸對稱圖形,不符合題意;等邊三角形三條中線所在的直線是對稱軸,是軸對稱圖形,符合題意;故軸對稱圖形共有5個.故答案為:5.【點睛】本題考查了軸對稱的概念.軸對稱的關(guān)鍵是尋找對稱軸,圖象沿某一直線折疊后可以重合.2、(1)(3)(4)【分析】如果一個圖形沿著一條直線對折后,直線兩旁的部分完全重合,這樣的圖形叫做軸對稱圖形,依據(jù)定義即可作出判斷.【詳解】解:線段的對稱軸是其垂直平分線,圓的對稱軸是其直徑所在的直線,正方形的對稱軸是其對角線所在直線和對邊中點的連線,(1)(3)(4)是軸對稱圖形,只有等腰三角形和等腰梯形是軸對稱圖形,(2)(5)不一定是軸對稱圖形,故一定是軸對稱圖形的有(1)(3)(4).故答案為:(1)(3)(4).【點睛】本題主要考查了軸對稱圖形的定義,解題的關(guān)鍵是正確確定軸對稱圖形的對稱軸.3、44【分析】根據(jù)平行線的性質(zhì)和翻折不變性解答.【詳解】解:∵ADBC,∴∠DFE=180°?∠CEF=180°?68°=112°,∴∠D′FE=112°,∠GFE=180°?112°=68°,∴∠GFD′=112°?68°=44°.故答案為:44.【點睛】本題考查了平行線的性質(zhì)和翻折不變性,注意觀察圖形.4、①【分析】根據(jù)題意先求出∠BAO=25°,進(jìn)而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根據(jù)等腰三角形的性質(zhì)即可得出,進(jìn)而再判斷②③即可.【詳解】解:∵∠BAC=50°,AO為∠BAC的平分線,∴∠BAO=∠BAC=×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分線,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC-∠ABO=65°-25°=40°.∵AO為∠BAC的平分線,AB=AC,∴直線AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點C與點O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-40°-40°=100°,∴∠OEF=∠CEO=50°,①正確;∵∠OCB=∠OBC=∠COE=40°,∴∠BOE=180°-∠OBC-∠COE-∠OCB=180°-40°-40°-40°=60°,②錯誤;∵∠ABO=∠BAO=25°,DO是AB的垂直平分線,∴∠DOB=90°-∠ABO=75°,∵∠OCB=∠OBC=40°,∴∠BOC=180°-∠OBC-∠OCB=180°-40°-40°=100°,∴∠DOC=∠DOB+∠BOC=75°+100°=175°,即D、O、C三點不共線,③錯誤.故答案為:①.【點睛】本題考查等腰三角形的性質(zhì)和三角形內(nèi)角和180°以及翻折變換及其應(yīng)用,解題的關(guān)鍵是根據(jù)翻折變換的性質(zhì),找出圖中隱含的等量關(guān)系,靈活運用有關(guān)定理來分析判斷.5、61°【分析】根據(jù)折疊性質(zhì)得出∠DED′=2∠DEF,根據(jù)∠1的度數(shù)求出∠DED′,即可求出∠DEF的度數(shù),進(jìn)而得到答案.【詳解】解:由翻折的性質(zhì)得:∠DED′=2∠DEF,∵∠1=58°,∴∠DED′=180°-∠1=122°,∴∠DEF=61°,又∵AD∥BC,∴∠EFB=∠DEF=61°.故答案為:61°.【點睛】本題考查了平行線的性質(zhì),翻折變換的性質(zhì),鄰補(bǔ)角定義的應(yīng)用,熟記折疊的性質(zhì)是解題的關(guān)鍵.6、4【分析】根據(jù)軸對稱的定義,即有一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱判斷即可;【詳解】解:根據(jù)軸對稱圖形的定義可知:一條線段的對稱軸是線段的垂直平分線;一個角其對稱軸是該角的角平分線所在的直線;相交線是軸對稱圖形,等腰三角形是軸對稱圖形,故共有4個軸對稱圖形.故答案為:4.【點睛】本題主要考查了軸對稱圖形的判定,準(zhǔn)確分析判斷是解題的關(guān)鍵.7、45°【分析】先根據(jù)題意可得BD=4-,∠FCG=90°,再根據(jù)翻折的性質(zhì)可得,,,結(jié)合FD平分∠EFB可得,由此可證得∠ADG=∠FCG=90°,則,進(jìn)而可證明,由此可得,進(jìn)而即可求得FG的長.【詳解】解:∵AB=4,AD=,∴BD=AB-AD=4-,∵∠ACB=90°,∴∠FCG=180°-∠ACB=90°,∵翻折,∴,∴,,,∵FD平分∠EFB,∴,∴,又∵,∴,即∠ADG=∠FCG=90°,∴∠FDB=180°-∠ADG=90°=∠ADG,,在與中,,∴,∴,∴,故答案為:45°;.【點睛】本題考查了翻折的性質(zhì),全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解決本題的關(guān)鍵.8、18【分析】因為P,P1關(guān)于OA對稱,P,P2關(guān)于OB對稱,推出PN=NP2,MP=MP1,推出△PMN的周長=PN+MN+PM=NP2+MN+NP1=P1P2即可解決問題.【詳解】解:∵P,P1關(guān)于OA對稱,P,P2關(guān)于OB對稱,∴PN=NP2,MP=MP1,∴△PMN的周長=PN+MN+PM=NP2+MN+MP1=P1P2=18,∴△PMN的周長為18.故答案為:18.【點睛】本題考查了軸對稱的性質(zhì),三角形的周長等知識,解題的關(guān)鍵是熟練掌握軸對稱的性質(zhì),學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.9、3【分析】根據(jù)對稱性可得陰影部分的面積為面積的一半,即可求解.【詳解】解:由和關(guān)于直線對稱可得,,陰影部分的面積為面積的一半即故答案為3.【點睛】此題考查了軸對稱的性質(zhì),熟練掌握軸對稱的性質(zhì)是解題的關(guān)鍵.10、124【分析】由折疊的性質(zhì)及平角等于180°可求出∠BEH的度數(shù),由AB∥CD,利用“兩直線平行,同位角相等”可求出∠CHG的度數(shù).【詳解】解:由折疊的性質(zhì),可知:∠AEF=∠FEH.∵∠BEH=4∠AEF+12°,∠AEF+∠FEH+∠BEH=180°,∴∠AEF+∠AEF+4∠AEF+12°=180°,∴∠AEF=×(180°12°)=28°,∴∠BEH=4∠AEF+12°=124°.∵AB∥CD,∴∠CHG=∠BEH=124°.故答案為:124.【點睛】本題主要考查了平行線的性質(zhì)、折疊的性質(zhì)以及對頂角,牢記“兩直線平行,同位角相等”是解題的關(guān)鍵.三、解答題1、(1)-2,1,7;(2)4;(3)存在這樣的點M,對應(yīng)的y=2.5或y=-3.5;(4)3t+3,5t+9,2t+6.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得出,解方程可求,根據(jù)數(shù)b是最小的正整數(shù),可得b=1即可;(2)先求出折點表示的是,然后點B到折點的距離,利用有理數(shù)加法即可出點B對稱點;(3)由題意知AB=3,點M在AB之間,AM+BM=3<6,分兩種情況討論M在AB之外的情況第一種情況,當(dāng)M在A點左側(cè)時,由MA+MB=MA+MA+AB=6,第二種情況,當(dāng)M在B點右側(cè)時由MA+MB=MB+MB+AB=6,解方程即可;(4)分別寫出點A、B、C表示的數(shù)為,用含t的代數(shù)式表示出AB、AC、BC即可.【詳解】解:(1)∵,且,∴,解得,∵數(shù)b是最小的正整數(shù),∴b=1,∴,故答案為:-2,1,7;(2)將數(shù)軸折疊,使得點A與點C重合,AC中點D表示的數(shù)為,點B表示1,BD=2.5-1=1.5,∴點B對應(yīng)的數(shù)是,2.5+1.5=4,故答案為:4;(3)由題意知AB=3,M在AB之間,AM+BM=3<6,分兩種情況討論M在AB之外的情況第一種情況,當(dāng)M在A點左側(cè)時由MA+MB=MA+MA+AB=6,得MA=1.5∴y<-2,-2-y=1.5∴y=-3.5;第二種情況,當(dāng)M在B點右側(cè)時由MA+MB=MB+MB+AB=6,得MB=1.5∴y>1,y-1=1,5∴y=2.5;故存在這樣的點M,對應(yīng)的y=2.5或y=-3.5.(4)點A以每秒1個單位長度的速度向左運動,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,t秒鐘后,A點表示-2-t,B點表示1+2t,C點表示7+4t∴;;;【點睛】本題考查了非負(fù)數(shù)和性質(zhì),一元一次方程的應(yīng)用、數(shù)軸及兩點間的距離,折疊性質(zhì),用代數(shù)式標(biāo)數(shù)距離,解題的關(guān)鍵是利用數(shù)軸的特點能求出兩點間的距離.2、(1)1,-2.5;(2)-3,5;(3)0.5;(4)M表示的數(shù)為-1011;N表示的數(shù)為1009【分析】(1)根據(jù)數(shù)軸的性質(zhì)讀數(shù),即可得到答案;(2)根據(jù)數(shù)軸和絕對值的性質(zhì)計算,即可得到答案;(3)根據(jù)數(shù)軸的性質(zhì)計算,即可得到答案;(4)根據(jù)數(shù)軸和絕對值的性質(zhì),結(jié)合題意,通過列方程并求解,即可得到答案.【詳解】解:(1)根據(jù)數(shù)軸性質(zhì),讀數(shù)得:A:1;B:-2.5,故答案是:1,-2.5;(2)假設(shè)與點A的距離為4的數(shù)為:x∵∴或∴或即與點A的距離為4的點表示的數(shù)是:5或-3,故答案是:5或-3,(3)∵A點與-3表示的點重合,且A點與-3距離為4∴A點與-3之間的中心點為:-1∴數(shù)軸以-1為中心折疊∵折疊后重合的點到點-1的距離相等又∵B點到-1點的距離為:設(shè)和B點重合的點為:x∴∴或(即B點舍去)∴B點與0.5表示的點重合,故答案是:0.5;(4)假設(shè)M點表示的數(shù)為:x,N點表示的數(shù)為:y∵數(shù)軸上M、N兩點之間的距離為2020(M在N的左側(cè)),且M、N兩點經(jīng)過(3)中折疊后互相重合∴M、N兩點到點-1距離為1010假設(shè)距離點-1的距離為1010的點為:x∴∴或∴或∵M(jìn)在N的左側(cè)∴M:-1011;N:1009,故答案是:-1011,1009.【點睛】本題考查了絕對值、數(shù)軸、一元一次方程的知識;解題的關(guān)鍵是熟練掌握絕對值、數(shù)軸、一元一次方程的性質(zhì),從而完成求解.3、見解析.【分析】根據(jù)等腰三角形的性質(zhì)得到∠B=∠C,運用AAS證明△DEB≌△DFC即可.【詳解】∵AB=AC,D是BC的中點,∴∠B=∠C,DB=DC,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∴△DEB≌△DFC(AAS),∴DE=DF.【點睛】本題考查了等腰三角形的性質(zhì),三角形的全等判定和性質(zhì),熟練掌握全等三角形的判定定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論