版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
京改版數(shù)學9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、若為銳角,,則等于(
)A. B. C. D.2、當0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,43、一個等腰直角三角形的內(nèi)切圓與外接圓的半徑之比為(
)A. B. C. D.4、古希臘數(shù)學家歐多克索斯在深入研究比例理論時,提出了分線段的“中末比”問題:點G將一線段分為兩線段,,使得其中較長的一段是全長與較短的段的比例中項,即滿足,后人把這個數(shù)稱為“黃金分割”數(shù),把點G稱為線段的“黃金分割”點.如圖,在中,已知,,若D,E是邊的兩個“黃金分割”點,則的面積為(
)A. B. C. D.5、把拋物線向右平移2個單位,然后向下平移1個單位,則平移后得到的拋物線解析式是(
)A. B.C. D.6、二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,由圖象可知該拋物線與x軸的交點坐標是(
)A.(﹣1,0)和(5,0) B.(1,0)和(5,0)C.(0,﹣1)和(0,5) D.(0,1)和(0,5)二、多選題(7小題,每小題2分,共計14分)1、如圖,在2×3的方格中,畫有格點△ABC,下列選項的方格中所畫格點三角形(陰影部分)與△ABC不相似的是()A. B. C. D.2、下列命題中,不正確的是(
)A.三點可確定一個圓B.三角形的外心是三角形三邊中線的交點C.一個三角形有且只有一個外接圓D.三角形的外心必在三角形的內(nèi)部或外部3、二次函數(shù)(a,b,c是常數(shù),)的自變量x與函數(shù)值y的部分對應值如下表:x…-2-1012……tm22n…已知.則下列結(jié)論中,正確的是(
)A. B.和是方程的兩個根C. D.(s取任意實數(shù))4、在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,且a=5,b=12,c=16,下面四個式子中錯誤的有()A.sinA= B.cosA= C.tanA= D.sinB=5、下列說法中,正確的是(
)A.兩角對應相等的兩個三角形相似B.兩邊對應成比例的兩個三角形相似C.兩邊對應成比例且夾角相等的兩個三角形相似D.三邊對應成比例的兩個三角形相似6、下列多邊形中,一定不相似的是(
)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形7、如圖,在△ABC中,點D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為3.4m.當起重臂AC長度為9m,張角∠HAC為118°時,操作平臺C離地面的高度為_______米.(結(jié)果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)2、如圖,點O是正方形ABCD的對稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F(xiàn)兩點,連接EF,已知,.(1)以點E,O,F(xiàn),D為頂點的圖形的面積為_________;(2)線段EF的最小值是_________.3、如圖是用杠桿撬石頭的示意圖,是支點,當用力壓杠桿的端時,杠桿繞點轉(zhuǎn)動,另一端向上翹起,石頭就被撬動.現(xiàn)有一塊石頭,要使其滾動,杠桿的端必須向上翹起,已知杠桿的動力臂與阻力臂之比為6:1,要使這塊石頭滾動,至少要將杠桿的端向下壓______.4、已知關(guān)于的一元二次方程,有下列結(jié)論:①當時,方程有兩個不相等的實根;②當時,方程不可能有兩個異號的實根;③當時,方程的兩個實根不可能都小于1;④當時,方程的兩個實根一個大于3,另一個小于3.以上4個結(jié)論中,正確的個數(shù)為_________.5、定義:由a,b構(gòu)造的二次函數(shù)叫做一次函數(shù)y=ax+b的“滋生函數(shù)”,一次函數(shù)y=ax+b叫做二次函數(shù)的“本源函數(shù)”(a,b為常數(shù),且).若一次函數(shù)y=ax+b的“滋生函數(shù)”是,那么二次函數(shù)的“本源函數(shù)”是______.6、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,則GD=_______cm.7、在平面直角坐標系中,二次函數(shù)過點(4,3),若當0≤x≤a時,y有最大值7,最小值3,則a的取值范圍是_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?2、如圖,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的長.3、如圖,矩形在平面直角坐標系中,交軸于點,動點從原點出發(fā),以每秒1個單位長度的速度沿軸正方向移動,移動時間為秒,過點P作垂直于軸的直線,交于點M,交或于點N,直線掃過矩形的面積為.(1)求點的坐標;(2)求直線移動過程中到點之前的關(guān)于的函數(shù)關(guān)系式;(3)在直線移動過程中,第一象限的直線上是否存在一點,使是等腰直角三角形?若存在,直接寫出點的坐標;若不存在,說明理由4、定義:若一個三角形最長邊是最短邊的2倍,我們把這樣的三角形叫做“和諧三角形”.在△ABC中,點F在邊AC上,D是邊BC上的一點,AB=BD,點A,D關(guān)于直線l對稱,且直線l經(jīng)過點F.(1)如圖1,求作點F;(用直尺和圓規(guī)作圖保留作圖痕跡,不寫作法)(2)如圖2,△ABC是“和諧三角形”,三邊長BC,AC,AB分別a,b,c,且滿足下列兩個條件:a≠2b,和a2+4c2=4ac+a﹣b﹣1.①求a,b之間的等量關(guān)系;②若AE是△ABD的中線.求證:△ACE是“和諧三角形”.5、已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過點A(2,6)和B(4,4),直線l經(jīng)過點B并與x軸垂直,垂足為Q.(1)求二次函數(shù)的表達式;(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點R是直線1上的點,如果△AOK與以O(shè),Q,R為頂點的三角形相似,請直接寫出點R的縱坐標;(3)如圖2,正方形CDEF的頂點C是第二象限拋物線上的點,點D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,F(xiàn)M的交點分別是G,H,并且CG=GM,F(xiàn)H=HM,連接CE,與FM的交點為N,且點N的縱坐標是﹣1.求:①tan∠DCG的值;②點C的坐標.6、某超市銷售一種商品,每件成本為50元,銷售人員經(jīng)調(diào)查發(fā)現(xiàn),銷售單價為100元時,每月的銷售量為50件,而銷售單價每降低2元,則每月可多售出10件,且要求銷售單價不得低于成本.(1)求該商品每月的銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式;(不需要求自變量取值范圍)(2)若使該商品每月的銷售利潤為4000元,并使顧客獲得更多的實惠,銷售單價應定為多少元?(3)超市的銷售人員發(fā)現(xiàn):當該商品每月銷售量超過某一數(shù)量時,會出現(xiàn)所獲利潤反而減小的情況,為了每月所獲利潤最大,該商品銷售單價應定為多少元?-參考答案-一、單選題1、B【解析】【分析】根據(jù)tan45°=1求出即可.【詳解】∵∠A為銳角,tanA=1,∴∠A=45°.故選B.【考點】本題考查了特殊角的三角函數(shù)值,主要考查學生的記憶能力和計算能力.2、A【解析】【分析】利用配方法把原方程化為頂點式,再根據(jù)二次函數(shù)的性質(zhì)即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)與利用配方法將一般式改為頂點式是解答本題的關(guān)鍵.3、D【解析】【分析】設(shè)等腰直角三角形的直角邊是1,則其斜邊是.根據(jù)直角三角形的內(nèi)切圓半徑是兩條直角邊的和與斜邊的差的一半,得其內(nèi)切圓半徑是;其外接圓半徑是斜邊的一半,得其外接圓半徑是.所以它們的比為=.【詳解】解:設(shè)等腰直角三角形的直角邊是1,則其斜邊是;∵內(nèi)切圓半徑是,外接圓半徑是,∴所以它們的比為=.故選:D.【考點】本題考查三角形的內(nèi)切圓與外接圓的知識,解題的關(guān)鍵是熟記直角三角形外接圓的半徑和內(nèi)切圓的半徑公式:直角三角形的內(nèi)切圓半徑等于兩條直角邊的和與斜邊的差的一半;直角三角形外接圓的半徑是斜邊的一半.4、A【解析】【分析】作AF⊥BC,根據(jù)等腰三角形ABC的性質(zhì)求出AF的長,再根據(jù)黃金分割點的定義求出BE、CD的長度,得到中DE的長,利用三角形面積公式即可解題.【詳解】解:過點A作AF⊥BC,∵AB=AC,∴BF=BC=2,在Rt,AF=,∵D是邊的兩個“黃金分割”點,∴即,解得CD=,同理BE=,∵CE=BC-BE=4-(-2)=6-,∴DE=CD-CE=4-8,∴S△ABC===,故選:A.【考點】本題考查了“黃金分割比”的定義、等腰三角形的性質(zhì)、勾股定理的應用以及三角形的面積公式,求出DE和AF的長是解題的關(guān)鍵。5、D【解析】【分析】直接根據(jù)“左加右減,上加下減”的原則進行解答即可.【詳解】由“左加右減”的原則可知,拋物線y=2x2向右平移2個單位所得拋物線是y=2(x?2)2;由“上加下減”的原則可知,拋物線y=2(x?2)2向下平移1個單位所得拋物線是y=2(x?2)2?1.故選D.【考點】本題考查了二次函數(shù)圖象與幾何變換,解題的關(guān)鍵是掌握二次函數(shù)圖象與幾何變換.6、A【解析】【分析】首先根據(jù)圖像得出拋物線的對稱軸和其中一個交點坐標,然后根據(jù)二次函數(shù)的對稱性即可求得另一個交點坐標.【詳解】解:由圖像可得,拋物線的對稱軸為,與x軸的一個交點坐標為(5,0),∵拋物線與x軸的兩個交點關(guān)于對稱軸對稱,∴拋物線與x軸的另一個交點坐標為(﹣1,0),故選:A.【考點】此題考查了二次函數(shù)與x軸的交點,二次函數(shù)的對稱性,解題的關(guān)鍵是根據(jù)二次函數(shù)的對稱性求出與x軸的另一個交點坐標.二、多選題1、BCD【解析】【分析】先判斷格中所畫格點三角形為直角三角形,利用兩組對應邊的比相等且夾角對應相等的兩個三角形相似,否則不相似,對各選項進行判斷.【詳解】解:由圖知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A選項中,三條線段的長為,因為,此三角形為直角三角形,長直角邊與短直角邊的比為2,所以A選項的方格中所畫格點三角形(陰影部分)與△ABC相似,不符合題意;B選項中,長直角邊與短直角邊的比為3,所以B中格點三角形與△ABC不相似,符合題意;C選項中,三條線段的長為√,因為,此三角形為直角三角形,兩直角邊的比為1,所以C選項的方格中所畫格點三角形(陰影部分)與△ABC不相似,符合題意;D選項中,三角形的兩直角邊的比為1:1.所以D中格點三角形與△ABC不相似,符合題意,故選:BCD.【考點】本題考查相似三角形的判定,能在格點中表示各個線段的長度和掌握相似三角形的判定定理是解決此題的關(guān)鍵.2、ABD【解析】【分析】根據(jù)圓的性質(zhì)定理逐項排查即可.【詳解】解:A.不在同一條直線上的三點確定一個圓,故本選項錯誤;B.三角形的外心是三角形三邊垂直平分線的交點,所以本選項是錯誤;C.三角形的外接圓是三條垂直平分線的交點,有且只有一個交點,所以任意三角形一定有一個外接圓,并且只有一個外接圓,所以本選項是正確的;D.直角三角形的外心在斜邊中點處,故本選項錯誤.故選:ABD.【考點】考查確定圓的條件以及三角形外接圓的知識,掌握三角形的外接圓是三條垂直平分線的交點是解題的關(guān)鍵.3、BC【解析】【分析】由表中數(shù)據(jù),結(jié)合二次函數(shù)的對稱性,可知,二次函數(shù)的對稱軸為,結(jié)合拋物線對稱軸為:,得出,由,,結(jié)合二次函數(shù)圖象性質(zhì),逐一分析各個選項,即可作出相應的判斷.【詳解】解:由表格數(shù)據(jù)可知,當時,,將點代入中,可得.由表格數(shù)據(jù)可知,當時,;當時,;即拋物線對稱軸為:,∵拋物線對稱軸為:,∴,化簡得,.∵,,∴拋物線解析式化為,.將點代入中,化簡得,,∵,∴,解得.∵,∴.∵,,,∴,故A選項說法錯誤,不符合題意;∵二次函數(shù)對稱軸為,∴和時,對應的函數(shù)值相等,∵時,對應函數(shù)值為,∴和是方程的兩個根,故B選項說法正確,符合題意;由表中數(shù)據(jù)可知,二次函數(shù)過點和,將點和分別代入二次函數(shù)解析式中,可得,,,故,C選項說法正確,符合題意;∵,∴,∵,∴,即,∵,∴,s取任意實數(shù),故D選項說法錯誤,不符合題意;故選:BC.【考點】本題考查了二次函數(shù)的圖象性質(zhì),二次函數(shù)與一元二次方程的關(guān)系,深入理解函數(shù)概念,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.4、ABCD【解析】【分析】根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】解:∵a=5,b=12,c=16,∴a2+b2≠c2,∴△ABC不是直角三角形,∴A、B、C、D四個選項都不對,故選:ABCD.【考點】本題考查的是銳角三角函數(shù)的定義,銳角A的對邊a與斜邊c的比叫做∠A的正弦;銳角A的鄰邊b與斜邊c的比叫做∠A的余弦;銳角A的對邊a與鄰邊b的比叫做∠A的正切.5、ACD【解析】【分析】根據(jù)相似三角形的判定定理判斷即可.【詳解】A
“兩角對應相等的兩個三角形相似”是正確的;B
“兩邊對應成比例的兩個三角形相似”是錯誤的,還需添上條件“且夾角相等”才成立;C
“兩邊對應成比例且夾角相等的兩個三角形相似”是正確的;D
“三邊對應成比例的兩個三角形相似”是正確的故選:ACD【考點】本題考查了相似三角形的判定定理,做題的關(guān)鍵是熟練掌握相似三角形的判定定理.6、ABD【解析】【分析】利用相似多邊形的對應邊的比相等,對應角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應角是否相等,對應邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應角、對應邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應角都是90°,對應邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應邊的比相等,對應角相等.兩個條件必須同時具備.7、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點】此題考查了三角形相似的判定方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.三、填空題1、7.6【解析】【分析】作于,于,如圖2,易得四邊形為矩形,則,,再計算出,在中利用正弦可計算出,然后計算即可.【詳解】解:作于E,于,如圖2,∴四邊形為矩形,∴,,∴,∴在中,,∴,∴,∴操作平臺離地面的高度為.故答案是:.【考點】本題考查了解直角三角形的應用:先將實際問題抽象為數(shù)學問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題),然后利用三角函數(shù)的定義進行幾何計算.2、
1
【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設(shè),則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設(shè),則,,在中,,∴當時,EF有最小值,故答案為:.【考點】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.3、60【解析】【分析】首先根據(jù)題意構(gòu)造出相似三角形,然后根據(jù)相似三角形的對應邊成比例求得端點A向下壓的長度.【詳解】解:如圖;AM、BN都與水平線垂直,即AM∥BN;易知:△ACM∽△BCN;∴,∵AC與BC之比為6:1,∴,即AM=6BN;∴當BN≥10cm時,AM≥60cm;故要使這塊石頭滾動,至少要將杠桿的端點A向下壓60cm.故答案為:60.【考點】本題考查相似三角形的判定與性質(zhì)的實際應用,正確的構(gòu)造相似三角形是解題的關(guān)鍵.4、①③④【解析】【分析】由根的判別式,根與系數(shù)的關(guān)系進行判斷,即可得到答案.【詳解】解:根據(jù)題意,∵一元二次方程,∴;∴當,即時,方程有兩個不相等的實根;故①正確;當,解得:,方程有兩個同號的實數(shù)根,則當時,方程可能有兩個異號的實根;故②錯誤;拋物線的對稱軸為:,則當時,方程的兩個實根不可能都小于1;故③正確;由,則,解得:或;故④正確;∴正確的結(jié)論有①③④;故答案為:①③④.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握所學的知識進行解題.5、【解析】【分析】由“滋生函數(shù)”和“本源函數(shù)”的定義,運用待定系數(shù)法求出函數(shù)的本源函數(shù).【詳解】解:由題意得解得∴函數(shù)的本源函數(shù)是.故答案為:.【考點】本題考查新定義運算下的一次函數(shù)和二次函數(shù)的應用,解題關(guān)鍵是充分理解新定義“本源函數(shù)”.6、4.5【解析】【分析】由三角形的重心的性質(zhì)即可得出答案.【詳解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中線,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案為:4.5.【考點】本題考查了三角形的重心,三角形三條中線的交點叫做三角形的重心,三角形的重心到一個頂點的距離等于它到對邊中點距離的兩倍.7、2≤a≤4.【解析】【分析】先求得拋物線的解析式,根據(jù)二次函數(shù)的性質(zhì)以及二次函數(shù)圖象上點的坐標特征即可得到a的取值范圍.【詳解】解:∵二次函數(shù)y=-x2+mx+3過點(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴拋物線開口向下,對稱軸是x=2,頂點為(2,7),函數(shù)有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵當0≤x≤a時,y有最大值7,最小值3,∴2≤a≤4.故答案為:2≤a≤4.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標特征,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.四、解答題1、△AFD∽△EFB,△ABC∽△ADE;理由見解析.【解析】【分析】根據(jù)兩個三角形的兩組角對應相等,那么這兩個三角形互為相似三角形證明即可.【詳解】解:△AFD∽△EFB,△ABC∽△ADE.理由如下:∵∠2=∠3,∠AFD=∠EFB∴△AFD∽△EFB,∴∠B=∠D.∵∠1=∠2,∴,∴∠BAC=∠DAE,∴△ABC∽△ADE.【考點】本題考查相似三角形的判定定理,熟記判定定理,本題用到了兩組角對應相等的兩個三角形互為相似三角形.2、9【解析】【分析】過點A作AF⊥BC交BC于F,則由已知得:BC=2BF,首先由AB=AC,∠BAC=120°得∠B=∠C=30°,則在直角三角形BAE中求出AB,再在直角三角形AFB中求出BF,從而求出BC.【詳解】解:過點A作AF⊥BC交BC于F,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,BC=2BF,在Rt△BAE中,AE=3cm,∴AB=cm,在Rt△AFB中,BF=AB?cos30°=,∴BC=2BF=2×=9.【考點】本題考查了等腰三角形的性質(zhì)和解直角三角形,通過作輔助線構(gòu)造直角三角形是解題關(guān)鍵3、(1);(2);(3)存在.【解析】【分析】(1)由,且AB=6即可求出AO的長,再由勾股定理即可求出BO的長,即可求出A和B點坐標.(2)P點從原點出發(fā),在到達終點前,直線l掃過的面積始終為平行四邊形BMNE,故求該平行四邊的底BE和高OP,相乘即得到面積S;由,且AB=6,可求出AC=10,過D點作DF⊥x軸,易證,求出CF=AO,進而求出OF的長;由,故,求出OE的長,進而求出OB+OE=BE.(3)分類討論,當B為直角頂角時,過Q1點作QH⊥y軸,此時△Q1HB≌△BOC,即可求出Q1的坐標;當Q2為直角頂角時,過Q2點作QM⊥y軸,QN⊥x軸,此時Q2MB≌Q2NC,即可求出Q2的坐標.【詳解】解:(1)由題意可得故答案為:(2)過點作軸,垂足為F,則
∴∵∴,故,求得.當時,直線掃過的圖形是平行四邊形,故答案為:.存在,.如下圖所示:情況一:當B為直角頂角時,此時BQ1=BC,過Q1點作Q1H1⊥y軸于H1,∴∠Q1H1B=∠BOC=90°,且BQ1=BC,∵∠Q1BC=90°∴∠H1BQ1+∠OBC=90°又∠BCO+∠OBC=90°∴∠H1BO1=∠BCO在△Q1H1B和△BOC中:,∴△△Q1H1B≌△BOC(AAS)∴Q1H1=BO=,BH1=OC=,∴OH1=∴情況二:當Q2為直角頂角時,此時有Q2B=Q2C,過Q2點分別作Q2M⊥y軸,Q2N⊥x軸∴∠MQ2B+∠BQ2N=90°又∴∠NQ2C+∠BQ2N=90°∴∠MQ2B=∠NQ2C在△MQ2B和△NQ2C中,∴△MQ2B≌△NQ2C(AAS)∴MQ2=NQ2=OM=ON,且∠MON=90°∴四邊形Q2MON為正方形,設(shè)MB=NC=a則OC-a=ON=OB=,且OC=∴求得a=,∴ON=OM=OB+a=∴故答案為:和【考點】本題考查了三角函數(shù)求值、平行四邊形的面積公式、三角形全等、等腰直角三角形等相關(guān)知識,利用銳角相等,其對應的三角函數(shù)值相同,可列出比例求解未知線段長.4、(1)見解析(2)①a=b+1②見解析【解析】【分析】(1)作AD的垂直平分線,交AC于F點即可;(2)①根據(jù)題意得到a=2c,聯(lián)立a2+4c2=4ac+a﹣b﹣1即可求解;②證明△ABE∽△CBA,得到,故可求解.【詳解】(1)如圖,點F為所求;(2)①∵△ABC是“和諧三角形”∴a=2c又a2+4c2=4ac+a﹣b﹣1.聯(lián)立化簡得到a=b+1;②∵E點是BD中點∴BE=由①得到AB=∴又∠ABE=∠CBA∴△ABE∽△CBA∴故△ACE是“和諧三角形”.【考點】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知垂直平分線的做法.5、(1)y=﹣;(2)點R的縱坐標為12,﹣12,或﹣;(3)①tan∠DCG的值是,②點C坐標為(﹣1,3).【解析】【分析】(1)將點A(2,6)和B(4,4)代入拋物線解析式,得方程組,解得a和b,再代回原解析式即可;(2)設(shè)點R的縱坐標為n,則QN=|n|,分兩種情況,根據(jù)相似關(guān)系列比例式即可解得;(3)①由三角形的中位線,及證Rt△CDG≌Rt△FEH(HL)可解;②先根據(jù)點C在拋物線上,設(shè)其橫坐標為m,然后用其分別表示出相關(guān)點的坐標,并表示出直線CE,再根據(jù)△CFN∽△EHN,及相似三角形對應邊上的高之比也等于相似比,從而建
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025天津津彩投資公司面向社會選聘1人(第25期)模擬筆試試題及答案解析
- 2025河南商丘梁園區(qū)招聘安全服務人員50人備考考試題庫及答案解析
- 2025年鄭大考試中心題庫及答案
- 三模必考語文試卷及答案
- 2025年考中級消防證題庫及答案
- 城鎮(zhèn)污水管網(wǎng)改造工程運營管理方案
- 工業(yè)園廠房建設(shè)項目運營管理方案
- 2025重慶市銅梁區(qū)市場監(jiān)督管理局食品藥品監(jiān)管公益性崗位招聘5人模擬筆試試題及答案解析
- 2025福建莆田市國睿產(chǎn)業(yè)園區(qū)運營管理有限公司招聘企業(yè)員工8人參考考試題庫及答案解析
- 安全設(shè)備管理考試題集
- 老年人穿衣搭配課件
- 【2025年】嘉興市委宣傳部所屬事業(yè)單位選聘工作人員考試試卷及參考答案
- 二手房意向金合同范本
- 充電樁與后臺服務器通訊協(xié)議V2G
- 抵御宗教極端思想課件
- 體育會展融合策略分析報告
- 如何調(diào)解婚姻家庭糾紛講座
- 重大活動網(wǎng)絡(luò)安全保障方案
- 江蘇省蘇州市吳中學、吳江、相城區(qū)2024-2025學年化學九上期末質(zhì)量檢測模擬試題含解析
- 建筑公司發(fā)展策劃方案
- 教育培訓銷售管理制度及主要工作流程
評論
0/150
提交評論