難點(diǎn)解析-山東省棲霞市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)試題(含答案解析版)_第1頁(yè)
難點(diǎn)解析-山東省棲霞市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)試題(含答案解析版)_第2頁(yè)
難點(diǎn)解析-山東省棲霞市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)試題(含答案解析版)_第3頁(yè)
難點(diǎn)解析-山東省棲霞市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)試題(含答案解析版)_第4頁(yè)
難點(diǎn)解析-山東省棲霞市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)試題(含答案解析版)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省棲霞市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(

)A.50cm B.120cm C.140cm D.100cm2、如圖,在中,,cm,cm,點(diǎn)、分別在、邊上.現(xiàn)將沿翻折,使點(diǎn)落在點(diǎn)處.連接,則長(zhǎng)度的最小值為(

)A.0 B.2 C.4 D.63、如圖,將△ABC放在正方形網(wǎng)格圖中(圖中每個(gè)小正方形的邊長(zhǎng)均為1),點(diǎn)A,B,C恰好在網(wǎng)格圖中的格點(diǎn)上,那么△ABC中BC邊上的高是(

)A. B. C. D.4、如圖,在△ABC中,∠BAC=90°,BC=5,以AB,AC為邊作正方形,這兩個(gè)正方形的面積和為(

)A.5 B.9 C.16 D.255、如圖,長(zhǎng)方形中,,,將此長(zhǎng)方形折疊,使點(diǎn)與點(diǎn)重合,折痕為,則的長(zhǎng)為(

)A.12 B.8 C.10 D.136、以下列各組數(shù)的長(zhǎng)為邊作三角形,不能構(gòu)成直角三角形的是(

)A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,157、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F,若AC=3,AB=5,則CE的長(zhǎng)為()A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、把一根長(zhǎng)12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.2、如圖,點(diǎn)在正方形的邊上,若,,那么正方形的面積為_.3、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個(gè)正方形.若四個(gè)陰影部分面積分別為,,,,則的值為______,的值為______.4、我國(guó)古代有這樣一道數(shù)學(xué)問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問葛藤之長(zhǎng)幾何?”題意是:如圖所示,把枯木看作一個(gè)圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長(zhǎng)為3尺,有葛藤自點(diǎn)A處纏繞而上,繞五周后其末端恰好到達(dá)點(diǎn)B處,則問題中葛藤的最短長(zhǎng)度是_______尺.

5、已知a、b、c是一個(gè)三角形的三邊長(zhǎng),如果滿足,則這個(gè)三角形的形狀是_______.6、《九章算術(shù)》中有一道“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長(zhǎng)各幾何?”題意是:有一個(gè)池塘,其底面是邊長(zhǎng)為10尺的正方形,一棵蘆葦AB生長(zhǎng)在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長(zhǎng)_____尺.7、如圖,在網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1.點(diǎn)A、B,C都在格點(diǎn)上,若BD是△ABC的高,則BD的長(zhǎng)為__________.8、如圖,在矩形中,,垂足為點(diǎn).若,,則的長(zhǎng)為______.三、解答題(7小題,每小題10分,共計(jì)70分)1、超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學(xué)在濱海大道紅樹林路段,嘗試用自己所學(xué)的知識(shí)檢測(cè)車速,觀測(cè)點(diǎn)設(shè)在到公路l的距離為100米的P處.這時(shí),一輛富康轎車由西向東勻速駛來,測(cè)得此車從A處行駛到B處所用的時(shí)間為3秒,并測(cè)得∠APO=60°,∠BPO=45°,試判斷此車是否超過了每小時(shí)80千米的限制速度?2、如圖,在正方形ABCD中,E是邊AB上的一動(dòng)點(diǎn),點(diǎn)F在邊BC的延長(zhǎng)線上,且,連接DE,DF.(1)求證:;(2)連接EF,取EF中點(diǎn)G,連接DG并延長(zhǎng)交BC于H,連接BG.①依題意,補(bǔ)全圖形;②求證:;③若,用等式表示線段BG,HG與AE之間的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論.3、如圖,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,點(diǎn)A,C,D依次在同一直線上,且AB∥DE.(1)求證:△ABC≌△DCE;(2)連結(jié)AE,當(dāng)BC=5,AC=12時(shí),求AE的長(zhǎng).4、如圖所示的一塊地,,,,,,求這塊地的面積.5、如圖,在筆直的鐵路上A、B兩點(diǎn)相距25km,C、D為兩村莊,,,于A,于B,現(xiàn)要在AB上建一個(gè)中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等,求E應(yīng)建在距A多遠(yuǎn)處?6、(1)如圖1是一個(gè)重要公式的幾何解釋,請(qǐng)你寫出這個(gè)公式;(2)伽菲爾德(1881年任美國(guó)第20屆總統(tǒng))利用(1)中的公式和圖2證明了勾股定理(1876年4月1日發(fā)表在《新英格蘭教育日志》上),現(xiàn)請(qǐng)你嘗試證明過程.說明:.7、如圖,,兩個(gè)工廠位于一段直線形河道的異側(cè),工廠至河道的距離為,工廠至河道的距離為,經(jīng)測(cè)量河道上、兩地間的距離為,現(xiàn)準(zhǔn)備在河邊某處(河寬不計(jì))修一個(gè)污水處理廠.(1)設(shè),請(qǐng)用的代數(shù)式表示的長(zhǎng)______;(結(jié)果保留根號(hào))(2)為了使,兩廠到污水處理廠的排污管道之和最短,請(qǐng)?jiān)趫D中畫出污水廠位置,并求出排污管道最短長(zhǎng)度?(3)通過以上的解答,充分展開聯(lián)想,運(yùn)用數(shù)形結(jié)合思想,請(qǐng)你求出的最小值為多少?-參考答案-一、單選題1、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點(diǎn)】本題考查了勾股定理的應(yīng)用,理解題意,畫出圖形是解題的關(guān)鍵.2、C【解析】【分析】當(dāng)H落在AB上,點(diǎn)D與B重合時(shí),AH長(zhǎng)度的值最小,根據(jù)勾股定理得到AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,于是得到結(jié)論.【詳解】解:當(dāng)H落在AB上,點(diǎn)D與B重合時(shí),AH長(zhǎng)度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,∴AH=AB-BH=4cm.故選:C.【考點(diǎn)】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.3、A【解析】【詳解】先用勾股定理耱出三角形的三邊,再根據(jù)勾股定理的逆定理判斷出△ABC是直角三角形,最后設(shè)BC邊上的高為h,利用三角形面積公式建立方程即可得出答案.解:由勾股定理得:,,,,即∴△ABC是直角三角形,設(shè)BC邊上的高為h,則,∴.故選A.點(diǎn)睛:本題主要考查勾股理及其逆定理.借助網(wǎng)格利用勾股定理求邊長(zhǎng),并用勾股定理的逆定理來判斷三角形是否是直角三角形是解題的關(guān)鍵.4、D【解析】【分析】設(shè),根據(jù)勾股定理可得,即可求解.【詳解】解:設(shè),根據(jù)勾股定理可得,即兩個(gè)正方形的面積和為25故選:D【考點(diǎn)】本題考查了勾股定理,掌握勾股定理是解題的關(guān)鍵.5、D【解析】【分析】設(shè)BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設(shè)BE為x,則DE為x,AE為25-x∵四邊形為長(zhǎng)方形∴∠EAB=90°∴在中由勾股定理有即化簡(jiǎn)得解得故選:D.【考點(diǎn)】本題考查了折疊問題求折痕或其他邊長(zhǎng),主要可根據(jù)折疊前后兩圖形的全等條件,把某個(gè)直角三角形的三邊都用同一未知量表示出來,并根據(jù)勾股定理建立方程,進(jìn)而可以求解.6、B【解析】【分析】先求出兩小邊的平方和,再求出最長(zhǎng)邊的平方,最后看看是否相等即可.【詳解】解:A、32+42=52,故是直角三角形,不符合題意;B、42+52≠62,故不是直角三角形,符合題意;C、62+82=102,故是直角三角形,不符合題意;D、92+122=152,故是直角三角形,不符合題意;故選:B.【考點(diǎn)】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.7、A【解析】【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對(duì)頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過點(diǎn)F作FG⊥AB于點(diǎn)G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長(zhǎng)為.故選A.【考點(diǎn)】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識(shí),關(guān)鍵是推出∠CEF=∠CFE.二、填空題1、直角三角形【解析】【分析】首先計(jì)算出第三條鐵絲的長(zhǎng)度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點(diǎn)】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.2、.【解析】【分析】根據(jù)勾股定理求出BC,根據(jù)正方形的面積公式計(jì)算即可.【詳解】解:由勾股定理得,,正方形的面積,故答案為.【考點(diǎn)】本題考查了勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.3、

24

0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個(gè)正方形,兩式相減可得:而故答案為:24,0【考點(diǎn)】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.4、25.【解析】【詳解】解:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題.根據(jù)勾股定理可求出葛藤長(zhǎng)為(尺).故答案為:25.5、直角三角形【解析】【分析】根據(jù)絕對(duì)值、完全平方數(shù)和算數(shù)平方根的非負(fù)性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點(diǎn)】本題主要考查了非負(fù)數(shù)的性質(zhì)和勾股定理的逆定理,運(yùn)用非負(fù)數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.6、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設(shè)水深A(yù)C=x尺,則蘆葦長(zhǎng)(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L(zhǎng)和水深.【詳解】解:設(shè)水深x尺,則蘆葦長(zhǎng)(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長(zhǎng)13尺,故答案為:13【考點(diǎn)】本題考查勾股定理,和列方程解決實(shí)際問題,能夠在實(shí)際問題中找到直角三角形并應(yīng)用勾股定理是解決本題的關(guān)鍵.7、##【解析】【分析】根據(jù)勾股定理計(jì)算AC的長(zhǎng),利用面積差可得三角形ABC的面積,由三角形的面積公式即可得到結(jié)論.【詳解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC?BD=4,∴×2BD=4,∴BD=,故答案為:.【考點(diǎn)】本題考查了勾股定理,三角形的面積的計(jì)算,掌握勾股定理是解題的關(guān)鍵.8、3【解析】【分析】在中,由正弦定義解得,再由勾股定理解得DE的長(zhǎng),根據(jù)同角的余角相等,得到,最后根據(jù)正弦定義解得CD的長(zhǎng)即可解題.【詳解】解:在中,在矩形中,故答案為:3.【考點(diǎn)】本題考查矩形的性質(zhì)、正弦、勾股定理等知識(shí),是重要考點(diǎn),難度較易,掌握相關(guān)知識(shí)是解題關(guān)鍵.三、解答題1、此車超過每小時(shí)80千米的限制速度.【解析】【分析】首先,根據(jù)在直角三角形BPO中,∠BPO=45°,可得到BO=PO=100m,再根據(jù)在直角三角形APO中,∠APO=60°,運(yùn)用三角函數(shù)值,可得到AO=100,根據(jù)AB=AO-BO可求得AB的長(zhǎng);再結(jié)合速度的計(jì)算方法,求出車的速度,然后將車的速度與80千米/時(shí)進(jìn)行比較,即可得到結(jié)論.【詳解】解:在Rt△APO中,∠APO=60°,則∠PAO=30°.∴AP=2OP=200m,AO===100(m).在Rt△BOP中,∠BPO=45°,則BO=OP=100m.∴AB=AO-BO=100-100≈73(m).∴從A到B小車行駛的速度為73÷3≈24.3(m/s)=87.48km/h>80km/h.∴此車超過每小時(shí)80千米的限制速度.【考點(diǎn)】本題考查了解直角三角形的應(yīng)用,從復(fù)雜的實(shí)際問題中整理出直角三角形并求解是解決此類題目的關(guān)鍵.2、(1)見解析(2)①見解析;②見解析;③BG2+HG2=4AE2.【解析】【分析】(1)證△ADE≌△CDF(SAS),得∠ADE=∠CDF,再證∠EDF=90°,即可得出結(jié)論;(2)①依題意,補(bǔ)全圖形即可;②由直角三角形斜邊上的中線性質(zhì)得DG=EF,BG=EF,即可得出結(jié)論;③先證△DEF是等腰直角三角形,得∠DEG=45°,再證DG⊥EF,DG=EF=EG,BG=EF=EG=FG,得∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,然后證△CDH≌△CDF(ASA),得CH=CF,再由勾股定理即可求解.(1)證明:∵四邊形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,即∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DE⊥DF;(2)①解:依題意,補(bǔ)全圖形如圖所示:②證明:由(1)可知,△DEF和△BEF都是直角三角形,∵G是EF的中點(diǎn),∴DG=EF,BG=EF,∴BG=DG;③BG2+HG2=4AE2,證明:由(1)可知,△ADE≌△CDF,DE⊥DF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DEG=45°,∵G為EF的中點(diǎn),∴DG⊥EF,DG=EF=EG,BG=EF=EG=FG,∴∠EGD=∠HGF=∠DGF=90°,∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,∵∠EGB=45°,∴∠GBF=∠GFB=22.5°,∵∠DHF+∠HFG=∠DHF+∠CDH=90°,∴∠HFG=∠CDH=22.5°,∴∠CDF=∠GDF?∠HDC=22.5°=∠CDH,又∵∠DCH=∠DCF=90°,CD=CD,∴△CDH≌△CDF(ASA),∴CH=CF,在Rt△GHF中,由勾股定理得:GF2+HG2=HF2,∵HF=2CF=2AE,GF=BG,∴BG2+HG2=(2AE)2,∴BG2+HG2=4AE2.【考點(diǎn)】本題是四邊形綜合題,考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、直角三角形斜邊上的中線性質(zhì)、等腰三角形的性質(zhì)等知識(shí);熟練掌握正方形的性質(zhì)和等腰直角三角形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵,屬于中考??碱}型.3、(1)見解析;(2)13【解析】【分析】根據(jù)題意可知,本題考查平行的性質(zhì),全等三角形的判定和勾股定理,根據(jù)判定定理,運(yùn)用兩直線平行內(nèi)錯(cuò)角相等再通過AAS以及勾股定理進(jìn)行求解.【詳解】解:(1)∵∴在△ABC和△DCE中∴△ABC≌△DCE(2)由(1)可得BC=CE=5在直角三角形ACE中【考點(diǎn)】本題考查平行的性質(zhì),全等三角形的判定和勾股定理,熟練掌握判定定理運(yùn)用以及平行的性質(zhì)是解決此類問題的關(guān)鍵.4、384【解析】【分析】連接,勾股定理求得,勾股定理的逆定理證明為直角三角形,進(jìn)而根據(jù)三角形的面積公式計(jì)算和的面積之差即可.【詳解】解:連接,在直角中,,,由,解得,在中,,,,∵,∴,∴為直角三角形,要求這塊地的面積,求和的面積之差即可,,答:這塊地的面積為.【考點(diǎn)】本題考查了勾股定理及其逆定理,掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.5、E應(yīng)建在距A點(diǎn)15km處【解析】【分析】設(shè),則,根據(jù)勾股定理求得和,再根據(jù)列式計(jì)算即可;【詳解】設(shè),則,由勾股定理得:在中,,在中,,由題意可知:,所以:,解得:.所以,E應(yīng)建

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論