難點(diǎn)詳解北師大版9年級數(shù)學(xué)上冊期末測試卷(輕巧奪冠)附答案詳解_第1頁
難點(diǎn)詳解北師大版9年級數(shù)學(xué)上冊期末測試卷(輕巧奪冠)附答案詳解_第2頁
難點(diǎn)詳解北師大版9年級數(shù)學(xué)上冊期末測試卷(輕巧奪冠)附答案詳解_第3頁
難點(diǎn)詳解北師大版9年級數(shù)學(xué)上冊期末測試卷(輕巧奪冠)附答案詳解_第4頁
難點(diǎn)詳解北師大版9年級數(shù)學(xué)上冊期末測試卷(輕巧奪冠)附答案詳解_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北師大版9年級數(shù)學(xué)上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、已知兩個直角三角形的三邊長分別為3,4,和6,8,,且這兩個直角三角形不相似,則的值為(

)A.或 B.15 C. D.2、如圖,G是正方形ABCD內(nèi)一點(diǎn),以GC為邊長,作正方形GCEF,連接BG和DE,試用旋轉(zhuǎn)的思想說明線段BG與DE的關(guān)系()A.DE=BG B.DE>BG C.DE<BG D.DE≥BG3、反比例函數(shù)圖象的兩個分支分別位于第一、三象限,則一次函數(shù)的圖象大致是(

)A. B.C. D.4、如圖,在四邊形ABCD中,,且AD=DC,則下列說法:①四邊形ABCD是平行四邊形;②AB=BC;③AC⊥BD;④AC平分∠BAD;⑤若AC=6,BD=8,則四邊形ABCD的面積為24,其中正確的有(

)A.2個 B.3個 C.4個 D.5個5、若關(guān)于x的一元二次方程x2﹣ax=0的一個解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.26、如圖,點(diǎn)A是反比例函數(shù)圖象上的一點(diǎn),過點(diǎn)A作軸,垂足為點(diǎn)C,D為AC的中點(diǎn),若的面積為1,則k的值為()A. B. C.3 D.4二、多選題(6小題,每小題2分,共計12分)1、如圖所示是△ABC位似圖形的幾種畫法,正確的是()A. B.C. D.2、平行四邊形ABCD的對角線相交于點(diǎn)O,分別添加下列條件使得四邊形ABCD是矩形的條件有(

)是菱形的條件有(

)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO3、手工制作課上,小紅利用一些花布的邊角料,剪裁后裝裱手工畫.下面四個圖案是她剪裁出的空心不等邊三角形.等邊三角形.正方形和矩形花邊,其中每個圖案花邊的寬度都相同,那么每個圖案中花邊的內(nèi)外邊緣所圍成的幾何圖形相似的是(

)A. B.C. D.4、平行四邊形的對角線與相交于點(diǎn),添加以下條件,能判定平行四邊形為菱形的是(

).A. B. C. D.5、兩個關(guān)于的一元二次方程和,其中,,是常數(shù),且.如果是方程的一個根,那么下列各數(shù)中,一定是方程的根的是()A. B. C.2 D.-26、圖,在邊長為4的正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB的中點(diǎn),連接AE,DF交于點(diǎn)N,將沿AE翻折,得到,AG交DF于點(diǎn)M,延長EG交AD的延長線于點(diǎn)H,連接CG,ME,取ME的中點(diǎn)為點(diǎn)O,連接NO,GO.則以下結(jié)論正確的有(

)A. B. C. D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、小明的身高為1.6,他在陽光下的影長為2,此時他旁邊的旗桿的影長為15,則旗桿的高度為_______.2、如圖,在中,,,,是斜邊上方一點(diǎn),連接,點(diǎn)是的中點(diǎn),垂直平分,交于點(diǎn),連接,交于點(diǎn),當(dāng)為直角三角形時,線段的長為________.3、如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)E、F分別是邊AB、BC上的動點(diǎn),且EF=4,點(diǎn)G是EF的中點(diǎn),AG、CG,則四邊形AGCD面積的最小值為_______.4、對于任意實(shí)數(shù)a、b,定義一種運(yùn)算:,若,則x的值為________.5、如果關(guān)于的一元二次方程有實(shí)數(shù)根,那么的取值范圍是___.6、如果關(guān)于x的方程有兩個相等的正實(shí)數(shù)根,那么m的值為____________.7、“降次”是解一元二次方程的基本思想,用這種思想解高次方程x3-x=0,它的解是_____________.8、寫出一個一元二次方程,使它有兩個不相等的實(shí)數(shù)根______.四、解答題(6小題,每小題10分,共計60分)1、某種病毒傳播非常快,如果1人被感染,經(jīng)過2輪感染后就會有81人被感染.(1)每輪感染中平均1人會感染幾人?(2)若病毒得不到有效控制,3輪感染后,被感染的人會不會超過700人?2、如圖,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于點(diǎn)M.(1)求證:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于點(diǎn)N,四邊形BNCM是什么四邊形?請證明你的結(jié)論.3、如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點(diǎn)C射進(jìn)房間的地板F處,中午太陽光恰好能從窗戶的最低點(diǎn)D射進(jìn)房間的地板E處,小明測得窗子距地面的高度OD=1m,窗高CD=1.5m,并測得OE=1m,OF=5m,求圍墻AB的高度.4、用適當(dāng)?shù)姆椒ń夥匠蹋?1)(1-x)2-2(x-1)-35=0;(2)x2+4x-2=0.5、發(fā)現(xiàn):四個連續(xù)的整數(shù)的積加上是一個整數(shù)的平方.驗證:(1)的結(jié)果是哪個數(shù)的平方?(2)設(shè)四個連續(xù)的整數(shù)分別為,試證明他們的積加上是一個整數(shù)的平方;延伸:(3)有三個連續(xù)的整數(shù),前兩個整數(shù)的平方和等于第三個數(shù)的平方,試求出這三個整數(shù)分別是多少.6、如圖,在四邊形ABCD中,AD∥BC,AD=12cm,BC=15cm,點(diǎn)P自點(diǎn)A向D以1cm/s的速度運(yùn)動,到D點(diǎn)即停止.點(diǎn)Q自點(diǎn)C向B以2cm/s的速度運(yùn)動,到B點(diǎn)即停止,點(diǎn)P,Q同時出發(fā),設(shè)運(yùn)動時間為t(s).(1)用含t的代數(shù)式表示:AP=;DP=;BQ=;CQ=.(2)當(dāng)t為何值時,四邊形APQB是平行四邊形?(3)當(dāng)t為何值時,四邊形PDCQ是平行四邊形?-參考答案-一、單選題1、A【解析】【分析】判斷未知邊m、n是直角三角形的直角邊還是斜邊,再根據(jù)勾股定理計算出m、n的值,最后根據(jù)題目中兩個三角形不相似,對應(yīng)邊的比值不同進(jìn)行判斷.【詳解】解:在第一個直接三角形中,若m是直角邊,則,若m是斜邊,則;在第二個直接三角形中,若n是直角邊,則,若n是斜邊,則;又因為兩個直角三角形不相似,故m=5和n=10,m=和n=不能同時取,即當(dāng)m=5,,,當(dāng),n=10,,故選:A.【考點(diǎn)】本題主要考查了勾股定理以及相似三角形的性質(zhì),在直角三角形中對未知邊是直角邊還是斜邊進(jìn)行不同情況的討論是解題的關(guān)鍵.2、A【解析】【分析】根據(jù)四邊形ABCD為正方形,得出BC=DC,∠BCD=90°,根據(jù)四邊形CEFG為正方形,得出GC=EC,∠GCE=90°,再證∠BCG=∠DCE,△BCG與△DCE具有可旋轉(zhuǎn)的特征即可【詳解】解:∵四邊形ABCD為正方形,∴BC=DC,∠BCD=90°,∵四邊形CEFG為正方形,∴GC=EC,∠GCE=90°,∵∠BCG+∠GCD=∠GCD+∠DCE=90°,∴∠BCG=∠DCE,∴△BCG繞點(diǎn)C順時針方向旋轉(zhuǎn)90°得到△DCE,∴BG=DE,故選項A.【考點(diǎn)】本題考查圖形旋轉(zhuǎn)特征,正方形性質(zhì),三角形全等條件,同角的余角性質(zhì),掌握圖形旋轉(zhuǎn)特征,正方形性質(zhì),三角形全等條件是解題關(guān)鍵.3、D【解析】【分析】根據(jù)題意可得,進(jìn)而根據(jù)一次函數(shù)圖像的性質(zhì)可得的圖象的大致情況.【詳解】反比例函數(shù)圖象的兩個分支分別位于第一、三象限,∴一次函數(shù)的圖象與y軸交于負(fù)半軸,且經(jīng)過第一、三、四象限.觀察選項只有D選項符合.故選D【考點(diǎn)】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)圖像的性質(zhì),根據(jù)已知求得是解題的關(guān)鍵.4、D【解析】【分析】由,可知四邊形ABCD是平行四邊形,可判斷①的正誤;由AD=DC,可知平行四邊形ABCD是菱形,根據(jù)菱形的性質(zhì)可判斷②③④⑤的正誤.【詳解】解:∵,∴四邊形ABCD是平行四邊形,故①正確;∵AD=DC,∴平行四邊形ABCD是菱形,∴AB=BC,AC⊥BD,AC平分∠BAD,故②③④正確;∵AC=6,BD=8,∴菱形ABCD的面積=,故⑤正確;∴正確的個數(shù)有5個,故選D.【考點(diǎn)】本題考查了平行四邊形的判定,菱形的判定與性質(zhì).解題的關(guān)鍵在于證明四邊形ABCD是菱形.5、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關(guān)于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選C.【考點(diǎn)】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.6、D【解析】【分析】先設(shè)出點(diǎn)A的坐標(biāo),進(jìn)而表示出點(diǎn)D的坐標(biāo),利用△ADO的面積建立方程求出,即可得出結(jié)論.【詳解】點(diǎn)A的坐標(biāo)為(m,2n),∴,∵D為AC的中點(diǎn),∴D(m,n),∵AC⊥軸,△ADO的面積為1,∴,∴,∴,故選:D.【考點(diǎn)】本題考查反比例函數(shù)系數(shù)k的幾何意義、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用反比例函數(shù)的性質(zhì)解答.二、多選題1、ABCD【解析】【分析】利用位似圖形的畫法:①確定位似中心;②分別連接并延長位似中心和能代表原圖的關(guān)鍵點(diǎn);③根據(jù)位似比,確定能代表所作的位似圖形的關(guān)鍵點(diǎn);④順次連接上述各點(diǎn),得到放大或縮小的圖形.【詳解】解:第一個圖形中的位似中心為A點(diǎn),第二個圖形中的位似中心為BC上的一點(diǎn),第三個圖形中的位似中心為O點(diǎn),第四個圖形中的位似中心為O點(diǎn).故選:ABCD.【考點(diǎn)】本題主要考查了位似變換,正確把握位似圖形的定義是解題關(guān)鍵.2、AEBCD【解析】【分析】因為四邊形ABCD是平行四邊形,要成為矩形加上一個角為直角或?qū)蔷€相等即可;要使其成為菱形,加上一組鄰邊相等或?qū)蔷€垂直均可.【詳解】A選項:∵∠ABC=90°,四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形.(有一個角是直角的平行四邊形是矩形)B選項:∵AC⊥BD,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(對角線互相垂直的平行四邊形是菱形)C選項:∵AB=BC,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(鄰邊相等的平行四邊形是菱形)D選項:如圖:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴?ABCD是菱形;E選項:∵AO=DO,四邊形ABCD是平行四邊形,∴AC=BD,∴四邊形ABCD是矩形.(對角線互相平分且相等的平行四邊形是矩形)故選:AE,BCD.【考點(diǎn)】考查了菱形和矩形的判定,解題關(guān)鍵是掌握平行四邊形的性質(zhì)和菱形、矩形的判定方法.3、ABC【解析】【分析】根據(jù)相似圖形的定義,結(jié)合圖形,對選項一一分析,排除不符合要求答案.【詳解】解:A、形狀相同,符合相似形的定義,對應(yīng)角相等,所以三角形相似,故該選項符合題意;B、形狀相同,符合相似形的定義,故該選項符合題意;C、形狀相同,符合相似形的定義,故該選項符合題意;D、兩個矩形,雖然四個角對應(yīng)相等,但對應(yīng)邊不成比例,故該選項不符合題意;故選:ABC.【考點(diǎn)】本題考查的是相似形的概念,聯(lián)系圖形,即形狀相同,大小不一定相同的圖形叫做相似形.全等形是相似形的一個特例.4、ABC【解析】【分析】根據(jù)菱形判定條件對各選項進(jìn)行判斷即可;【詳解】解:當(dāng)時,平行四邊形是菱形;當(dāng)時,平行四邊形是菱形;當(dāng)時,平行四邊形是菱形;故選A、B、C.【考點(diǎn)】本題考查了菱形的判定.解題的關(guān)鍵在于熟練掌握菱形的判定條件.5、AD【解析】【分析】利用方程根的定義去驗證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個根,∴是方程的一個根,∴是方程的一個根,即時方程的一個根.∵是方程的一個根,∴,當(dāng)x=時,,∴是方程的根.故選:A,D.【考點(diǎn)】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數(shù)的值,正確理解定義是解題的關(guān)鍵.6、ABC【解析】【詳解】解:∵四邊形ABCD是正方形,∴AD=AB=BC,∠DAB=∠B=90°,∴∠ADF+∠AFD=90°,∵點(diǎn)E、F分別是邊BC、AB的中點(diǎn),∴AF=AB,BE=EC=BC,∴AF=BE,∴△DAF≌△ABE(SAS),∴∠BAE=∠ADF,∴∠BAE+∠AFD=90°,∴∠ANF=180°-(∠BAE+∠AFD)=90°,∴∠AND=90°,故A正確;∵四邊形ABCD是正方形,∴AD∥BC,∴∠DAE=∠AEB,由折疊得:∠AEB=∠AEG,∴∠DAE=∠AEG,∴AH=EH,故B正確;由折疊得:∠AEB=∠AEG=(180°-∠GEC),GE=BE=EC,∴∠EGC=∠ECG=(180°-∠GEC),∴.∠AEB=∠GCE,∴AE∥CG,故C正確;∵O為ME中點(diǎn),∴,,∴+,∵+-,且△AGE≌△DAF,∴+-,∵∠AND=90°=∠ANF,∠FAN=∠MAN,AN=AN,∴△ANF≌△ANM,∴+-,∴,只有M是邊DN中點(diǎn)的時,D才成立,故D錯誤;故選A、B、C.【考點(diǎn)】本題考查正方形和折疊的綜合應(yīng)用,熟練掌握正方形的性質(zhì)、折疊的性質(zhì)、三角形全等的判定和性質(zhì)、三角形內(nèi)角和定理、平行線的判定等是解題關(guān)鍵.三、填空題1、12【解析】【分析】設(shè)這根旗桿的高度為xm,利用某一時刻物體的高度與它的影長的比相等得到,然后利用比例性質(zhì)求x即可.【詳解】設(shè)這根旗桿的高度為xm,根據(jù)題意得解得x=12(m),即這根旗桿的高度為12m.故答案為12.【考點(diǎn)】本題考查了相似三角形的應(yīng)用:利用影長測量物體的高度;利用相似測量河的寬度(測量距離);借助標(biāo)桿或直尺測量物體的高度.2、或【解析】【分析】(1)分別在、、中應(yīng)用含角的直角三角形的性質(zhì)以及勾股定理求得,,再根據(jù)垂直平分線的性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的判定求得,最后利用線段的和差即可求得答案;根據(jù)垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)、分線段成比例定理可證得,然后根據(jù)平行線的性質(zhì)、相似三角形的判定和性質(zhì)列出方程,解方程即可求得,最后利用線段的和差即可求得答案.【詳解】解:①當(dāng)時,如圖1:∵在中,,,∴∴∵,∴∵∴∴在中,設(shè),則∵∴∴∴,∵垂直平分線段∴∵∴是等邊三角形∴∴∴;②當(dāng)時,連接、交于點(diǎn),過點(diǎn)作于,如圖2:設(shè),則,∵垂直平分線段,點(diǎn)是的中點(diǎn)∴∵∴∵∵∴垂直平分線段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴綜上所述,滿足條件的的值為6或.故答案是:6或【考點(diǎn)】本題考查了垂直平分線的性質(zhì)和判定、含角的直角三角形的性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)、平行線的判定和性質(zhì)、相似三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)等,滲透了邏輯推理的核心素養(yǎng)以及分類討論的數(shù)學(xué)思想.3、38【解析】【分析】根據(jù)題目要求,要使四邊形AGCD的面積最小,因為的面積固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點(diǎn)B到AC的距離減去BG的長度,則可求解.【詳解】依題意,在中,為EF的中點(diǎn),,,點(diǎn)G在以B為圓心,2為半徑的圓與長方形重合的弧上運(yùn)動,,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點(diǎn)B到AC的距離為,此時點(diǎn)G到AC的距離為,故的最小面積為,,故答案為:38.【考點(diǎn)】本題考查了動點(diǎn)問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質(zhì),三角形等積法求高等性質(zhì)定理進(jìn)行求解,對于相關(guān)性質(zhì)定理的熟練運(yùn)用是解題的關(guān)鍵.4、或2【解析】【分析】根據(jù)新定義的運(yùn)算得到,整理并求解一元二次方程即可.【詳解】解:根據(jù)新定義內(nèi)容可得:,整理可得,解得,,故答案為:或2.【考點(diǎn)】本題考查新定義運(yùn)算、解一元二次方程,根據(jù)題意理解新定義運(yùn)算是解題的關(guān)鍵.5、【解析】【分析】由一元二次方程根與系數(shù)的關(guān)鍵可得:從而列不等式可得答案.【詳解】解:關(guān)于的一元二次方程有實(shí)數(shù)根,故答案為:【考點(diǎn)】本題考查的是一元二次方程根的判別式,掌握一元二次方程根的判別式是解題的關(guān)鍵.6、4【解析】【分析】根據(jù)一元二次方程根的判別式即可求得或,再根據(jù)方程有兩個相等的正實(shí)數(shù)根,可知兩根之和為正數(shù),據(jù)此即可解答.【詳解】解:關(guān)于x的方程有兩個相等的實(shí)數(shù)根解得或又關(guān)于x的方程有兩個相等的正實(shí)數(shù)根兩根之和為正數(shù),即,解得故故答案為:4【考點(diǎn)】本題考查了一元二次方程根的判別式及根與系數(shù)的關(guān)系,熟練掌握和運(yùn)用一元二次方程根的判別式及根與系數(shù)的關(guān)系是解決本題的關(guān)鍵解.7、【解析】【分析】先把方程的左邊分解因式,再化為三個一次方程進(jìn)行降次,再解一次方程即可.【詳解】解:則或或解得:故答案為:【考點(diǎn)】本題考查的是利用因式分解的方法把高次方程轉(zhuǎn)化為一次方程,掌握“因式分解的方法與應(yīng)用”是解本題的關(guān)鍵.8、x2+x﹣1=0(答案不唯一)【解析】【分析】這是一道開放自主題,只要寫出的方程的Δ>0就可以了.【詳解】解:比如a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=1+4=5>0,∴方程為x2+x﹣1=0.故答案為:x2+x﹣1=0(答案不唯一)【考點(diǎn)】本題考查了一元二次方程根的判別式,掌握“根的判別式大于0,方程有兩個不相等的實(shí)數(shù)根”是解題的關(guān)鍵.四、解答題1、(1)8人(2)會【解析】【分析】(1)設(shè)每輪感染中平均一個人會感染x個人,根據(jù)一個人被感染經(jīng)過兩輪感染后就會有81個人被感染,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論;(2)根據(jù)3輪感染后被感染的人數(shù)=2輪感染后被感染的人數(shù)×(1+8),即可求出3輪感染后被感染的人數(shù),再將其與700進(jìn)行比較后即可得出結(jié)論.(1)設(shè)每輪感染中平均1人會感染x人,依題意,得1+x+x(1+x)=81,解得x1=8,x2=-10(不合題意,舍去).答:每輪感染中平均1人會感染8人.(2)81×(1+8)=729(人),729>700.答:若病毒得不到有效控制,3輪感染后,被感染的人會超過700人.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.2、(1)證明見解析;(2)四邊形BNCM是菱形,證明見解析.【解析】【分析】(1)根據(jù)題意利用AAS可證明出△ABM和△DCM,然后根據(jù)全等三角形的性質(zhì)得出∠MBC=∠MCB,最后利用AAS即可作出證明;(2)根據(jù)平行線的性質(zhì)和題意,即可得出△MBC≌△NCB,根據(jù)全等三角形的性質(zhì)即可作出證明.【詳解】如圖所示(1)在△ABM和△DCM中,,∴△ABM≌△DCM(AAS),∴BM=CM,∴∠MBC=∠MCB,在△ABC和△DCB中,,∴△ABC≌△DCB(AAS)(2)四邊形BNCM是菱形,其理由如下:∵CN∥BD,∴∠MBC=∠NCB,又∵BN∥AC,∴∠MCB=∠NBC,在△MBC和△NCB中,,∴△MBC≌△NCB(ASA),∴BM=CN,MC=NB,又∵BM=CM,∴BM=MC=CN=NB,∴四邊形BNCM是菱形.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)和判定和菱形的判定,熟練運(yùn)用相關(guān)的判定與性質(zhì)是解題的關(guān)鍵.3、4m【解析】【分析】首先根據(jù)DO=OE=1m,可得∠DEB=45°,然后證明AB=BE,再證明△ABF∽△COF,可得,然后代入數(shù)值可得方程,解出方程即可得到答案.【詳解】解:延長OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,設(shè)AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=4.經(jīng)檢驗:x=4是原方程的解.答:圍墻AB的高度是4m.【考點(diǎn)】此題主要考查了相似三角形的應(yīng)用,解決問題的關(guān)鍵是求出AB=BE,根據(jù)相似三角形的判定方法證明△ABF∽△COF.4、(1)x1=8,x2=-4(2)x1=-2,x2=--2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解;(2)用配方法解答,配方前先把-2移項,而后配方,等號左右斗毆配上一次項系數(shù)一半的平方.(1)原方程可變形為(x-1-7)(x-1+5)=0,x-8=0或x+4=0,∴x1=8,x2=-4;(2)移項,得x2+4x=2,配方,得x2+4x+4=6,即(x+2)2=6,兩邊開平方,得x+2=±,∴x1=-2,x2=--2.【考點(diǎn)】本題考查了用適當(dāng)方法解一元二次方程,解決問題的關(guān)鍵是先考慮直接開平方法分解因式法,而后再考慮配方法或公式法.5、(1)3×4×5×6+1的結(jié)果是19的平方;(2)見解析;(3)這三個連續(xù)的整數(shù)分別是3、4、5或-1、0、1【解析】【分析】(1)按照有理數(shù)的乘法計算出結(jié)果,即可判斷是19的平方;(2)設(shè)出四個連續(xù)整數(shù),根據(jù)題意得到式子,對式子進(jìn)行轉(zhuǎn)化,利用完全平方公式得到一個整數(shù)的平方;(3)設(shè)中間的整數(shù)是x,則另外兩個整數(shù)分別

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論