蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬測(cè)試真題(比較難)答案_第1頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬測(cè)試真題(比較難)答案_第2頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬測(cè)試真題(比較難)答案_第3頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬測(cè)試真題(比較難)答案_第4頁
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬測(cè)試真題(比較難)答案_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬測(cè)試真題(比較難)答案一、解答題1.如圖,直線,、是、上的兩點(diǎn),直線與、分別交于點(diǎn)、,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),連接、.(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),,,則_____.(2)若點(diǎn)與點(diǎn)、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.2.閱讀下列材料并解答問題:在一個(gè)三角形中,如果一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱為“夢(mèng)想三角形”例如:一個(gè)三角形三個(gè)內(nèi)角的度數(shù)分別是120°,40°,20°,這個(gè)三角形就是一個(gè)“夢(mèng)想三角形”.反之,若一個(gè)三角形是“夢(mèng)想三角形”,那么這個(gè)三角形的三個(gè)內(nèi)角中一定有一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍.(1)如果一個(gè)“夢(mèng)想三角形”有一個(gè)角為108°,那么這個(gè)“夢(mèng)想三角形”的最小內(nèi)角的度數(shù)為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點(diǎn)A,過點(diǎn)A作AB⊥OM交ON于點(diǎn)B,以A為端點(diǎn)作射線AD,交線段OB于點(diǎn)C(點(diǎn)C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢(mèng)想三角形”,為什么?(3)如圖2,點(diǎn)D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點(diǎn)E,在DC上取一點(diǎn)F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢(mèng)想三角形”,求∠B的度數(shù).3.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點(diǎn)O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)4.如圖,△ABC和△ADE有公共頂點(diǎn)A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過AC上一點(diǎn)O作OG⊥AC,分別交AB、AD、AE于點(diǎn)G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長;②如圖2,∠AFO的平分線和∠AOF的平分線交于點(diǎn)M,∠FHD的平分線和∠OGB的平分線交于點(diǎn)N,∠N+∠M的度數(shù)是否發(fā)生變化?若不變,求出其度數(shù);若改變,請(qǐng)說明理由.5.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.6.在△ABC中,∠ABC=∠ACB,點(diǎn)D在直線BC上(不與B、C重合),點(diǎn)E在直線AC上(不與A、C重合),且∠ADE=∠AED.(1)如圖1,若∠ABC=50°,∠AED=80°,則∠CDE=°,此時(shí),=.(2)若點(diǎn)D在BC邊上(點(diǎn)B、C除外)運(yùn)動(dòng)(如圖1),試探究∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由;(3)若點(diǎn)D在線段BC的延長線上,點(diǎn)E在線段AC的延長線上(如圖2),其余條件不變,請(qǐng)直接寫出∠BAD與∠CDE的數(shù)量關(guān)系:.(4)若點(diǎn)D在線段CB的延長線上(如圖3),點(diǎn)E在直線AC上,∠BAD=26°,其余條件不變,則∠CDE=(友情提醒:可利用圖3畫圖分析).7.已知,點(diǎn)、分別是、上的點(diǎn),點(diǎn)在、之間,連接、.(1)如圖1,若,求的度數(shù).(2)在(1)的條件下,分別作和的平分線交于點(diǎn),求的度數(shù).(3)如圖2,若點(diǎn)是下方一點(diǎn),平分,平分,已知.則判斷以下兩個(gè)結(jié)論是否正確,并證明你認(rèn)為正確的結(jié)論.①為定值;②為定值.8.已知:如圖1直線、被直線所截,.(1)求證:;(2)如圖2,點(diǎn)E在,之間的直線上,P、Q分別在直線、上,連接、,平分,平分,則和之間有什么數(shù)量關(guān)系,請(qǐng)直接寫出你的結(jié)論;(3)如圖3,在(2)的條件下,過P點(diǎn)作交于點(diǎn)H,連接,若平分,,求的度數(shù).9.我們將內(nèi)角互為對(duì)頂角的兩個(gè)三角形稱為“對(duì)頂三角形.例如,在圖1中,的內(nèi)角與的內(nèi)角互為對(duì)頂角,則與為對(duì)頂三角形,根據(jù)三角形內(nèi)角和定理知“對(duì)頂三角形”有如下性質(zhì):.(1)(性質(zhì)理解)如圖2,在“對(duì)頂三角形”與中,,,求證:;(2)(性質(zhì)應(yīng)用)如圖3,在中,點(diǎn)D、E分別是邊、上的點(diǎn),,若比大20°,求的度數(shù);(3)(拓展提高)如圖4,已知,是的角平分線,且和的平分線和相交于點(diǎn)P,設(shè),求的度數(shù)(用表示).10.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點(diǎn),若,試探求與的數(shù)量關(guān)系,并說明理由;(3)如圖3,在(2)的條件下,且的延長線與的延長線有交點(diǎn),當(dāng)點(diǎn)在線段的延長線上從左向右移動(dòng)的過程中,直接寫出與所有可能的數(shù)量關(guān)系.【參考答案】一、解答題1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計(jì)算∠PFD即可;(2)根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí);②當(dāng)點(diǎn)P在AB上方時(shí);③當(dāng)點(diǎn)P在CD下方時(shí),分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí),過點(diǎn)P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點(diǎn)P在AB上方時(shí),如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點(diǎn)P在CD下方時(shí),∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點(diǎn)睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問題.2.(1)36°或18°;(2)△AOB、△AOC都是“夢(mèng)想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內(nèi)角和等于180°,如果一個(gè)“夢(mèng)想三角形”有一個(gè)角為108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“夢(mèng)想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據(jù)三角形內(nèi)角和等于180°,如果一個(gè)“夢(mèng)想三角形”有一個(gè)角為108°,可得另兩個(gè)角的和為72°,由三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的3倍時(shí),可以分別求得最小角為180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比較得出答案即可;(2)根據(jù)垂直的定義、三角形內(nèi)角和定理求出∠ABO、∠OAC的度數(shù),根據(jù)“夢(mèng)想三角形”的定義判斷即可;(3)根據(jù)同角的補(bǔ)角相等得到∠EFC=∠ADC,根據(jù)平行線的性質(zhì)得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根據(jù)角平分線的定義得到∠ADE=∠CDE,求得∠B=∠BCD,根據(jù)“夢(mèng)想三角形”的定義求解即可.【詳解】解:當(dāng)108°的角是另一個(gè)內(nèi)角的3倍時(shí),最小角為180°﹣108°﹣108÷3°=36°,當(dāng)180°﹣108°=72°的角是另一個(gè)內(nèi)角的3倍時(shí),最小角為72°÷(1+3)=18°,因此,這個(gè)“夢(mèng)想三角形”的最小內(nèi)角的度數(shù)為36°或18°.故答案為:18°或36°.(2)△AOB、△AOC都是“夢(mèng)想三角形”證明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB為“夢(mèng)想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“夢(mèng)想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“夢(mèng)想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.【點(diǎn)睛】本題考查的是三角形內(nèi)角和定理、“夢(mèng)想三角形”的概念,用分類討論的思想解決問題是解本題的關(guān)鍵.3.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過E點(diǎn),F(xiàn)點(diǎn),G點(diǎn),H點(diǎn)作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過點(diǎn)O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M(jìn)1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點(diǎn)睛:本題考查了平行線的性質(zhì),角平分線的定義,解決此類題目,過拐點(diǎn)作平行線是解題的關(guān)鍵,準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系也很重要.4.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定義求出∠M,∠N(用∠FAO表示),可得結(jié)論.【詳解】解:(1)如圖,∵AB∥ED∴∠E=∠EAB=90°(兩直線平行,內(nèi)錯(cuò)角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案為:45°.(2)①如圖1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=?GH?AO=4,S△AHF=?FH?AO=1,∴GH=4,F(xiàn)H=1,∴OF=GH-HF-OG=4-1-2=1.②結(jié)論:∠N+∠M=142.5°,度數(shù)不變.理由:如圖2中,∵M(jìn)F,MO分別平分∠AFO,∠AOF,∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,∵NH,NG分別平分∠DHG,∠BGH,∴∠N=180°-(∠DHG+∠BGH)=180°-(∠HAG+∠AGH+∠HAG+∠AHG)=180°-(180°+∠HAG)=90°-∠HAG=90°-(30°+∠FAO+45°)=52.5°-∠FAO,∴∠M+∠N=142.5°.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì)等知識(shí),最后一個(gè)問題的解題關(guān)鍵是用∠FAO表示出∠M,∠N.5.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點(diǎn)E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點(diǎn)E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗(yàn):是原方程的根,且符合題意.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.6.(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內(nèi)角和定理以及三角形的外角的性質(zhì)解決問題即可;(2)結(jié)論:∠B解析:(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內(nèi)角和定理以及三角形的外角的性質(zhì)解決問題即可;(2)結(jié)論:∠BAD=2∠CDE.設(shè)∠B=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=yx,∠DAE=180°-2y,推出∠BAD=∠BAC-∠DAE=2y-2x=2(y-x),由此可得結(jié)論.(3)如圖②中,結(jié)論:∠BAD=2∠CDE.解決方法類似(2).(4)分兩種情形:①當(dāng)點(diǎn)E在CA的延長線上,設(shè)∠ABC=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,由題意,∠BAD=180°-∠BAC-∠DAE=2x+2y-180°=22°,推出x+y=101°,可得結(jié)論.②如圖④中,當(dāng)點(diǎn)E在AC的延長線上時(shí),同法可求.【詳解】解:(1)如圖①中,∵∠ABC=∠ACB=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠AED=∠CDE+∠C,∴∠CDE=80°﹣50°=30°,∵∠ADE=∠AED=80°,∴∠DAE=180°﹣80°﹣80°=20°,∴∠BAD=∠BAC﹣∠DAE=80°﹣20°=60°,∴=2.故答案為30,2;(2)結(jié)論:∠BAD=2∠CDE.理由:設(shè)∠B=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=y(tǒng)﹣x,∠DAE=180°﹣2y,∴∠BAD=∠BAC﹣∠DAE=2y﹣2x=2(y﹣x),∴∠BAD=2∠CDE;(3)如圖②中,結(jié)論:∠BAD=2∠CDE.理由:設(shè)∠B=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=∠BAC+∠DAE=360°﹣2(x+y),∴∠BAD=2∠CDE.故答案為:∠BAD=2∠CDE;(4)如圖③中,設(shè)∠ABC=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=180°﹣∠BAC﹣∠DAE=2x+2y﹣180°=26°,∴x+y=103°∴∠CDE=180°﹣103°=77°.如圖④中,當(dāng)點(diǎn)E在AC的延長線上時(shí),設(shè)∠ABC=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠ADB=x﹣26°,∠CDE=y(tǒng)﹣(x﹣26°),∵∠ACB=∠CDE+∠AED,∴x=y(tǒng)+y﹣(x﹣26°),∴x﹣y=13°,∴∠CDE=x﹣y=13°故答案為:77°或13°.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),三角形內(nèi)角和定理,三角形的外角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)解決問題,屬于中考??碱}型.7.(1)(2)(3)②是正確的,證明見解析【分析】(1)過點(diǎn)G作GE∥AB,然后利用平行線性質(zhì)即可得到結(jié)果;(2)分別過G和H作GE∥AB,F(xiàn)H∥AB,然后利用平行線的性質(zhì)得到對(duì)應(yīng)的邊角解析:(1)(2)(3)②是正確的,證明見解析【分析】(1)過點(diǎn)G作GE∥AB,然后利用平行線性質(zhì)即可得到結(jié)果;(2)分別過G和H作GE∥AB,F(xiàn)H∥AB,然后利用平行線的性質(zhì)得到對(duì)應(yīng)的邊角關(guān)系,進(jìn)而∠MHN的具體值;(3)根據(jù)角平分線性質(zhì),設(shè),然后利用平行線的基本性質(zhì),分別推導(dǎo)出和的值即可判斷.【詳解】(1)如圖所示,過點(diǎn)作,∵,,∴,∴,,∴,∵,∴,∴.(2)如圖所示,過點(diǎn)作,過點(diǎn)作,∵,∴,∴,,∴,∵,∴,∵平分,平分,∴,,∴,∵,∴,,∴.(3)如圖所示,∵,∴,∵平分,∴,∴,∴,∵平分,∴,設(shè),則,∴,∴,,∴②中的值為定值.故②是正確的.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),做題的關(guān)鍵是能夠找到輔助線,構(gòu)造輔助線.8.(1)證明見解析;(2),理由見解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質(zhì)即可證明,同理可證明,由此再根據(jù)角平分線的定義和平角的性質(zhì)可得;(3)設(shè),.,則,想辦解析:(1)證明見解析;(2),理由見解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質(zhì)即可證明,同理可證明,由此再根據(jù)角平分線的定義和平角的性質(zhì)可得;(3)設(shè),.,則,想辦法構(gòu)建方程即可解決問題;【詳解】解:(1)如圖1中,,,,.(2)結(jié)論:如圖2中,.理由:作.,,,,,,,同理可證:,∵平分,平分,,,∵,,;(3)設(shè),.,∵,∴,∵,∴,,,,平分,,,平分,,,,,,.【點(diǎn)睛】本題考查平行線的判定和性質(zhì),角平分線的定義等知識(shí),(2)中能正確作出輔助線是解題關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題關(guān)鍵.9.(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對(duì)頂三角形”的性質(zhì)得,從而得,進(jìn)而即可得到結(jié)論;(2)設(shè)=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=解析:(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對(duì)頂三角形”的性質(zhì)得,從而得,進(jìn)而即可得到結(jié)論;(2)設(shè)=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=y-20°,根據(jù)三角形內(nèi)角和定理,列出方程,即可求解;(3)設(shè)∠ABE=∠CBE=x,∠ACD=∠BCD=y,可得x+y=90°-,結(jié)合∠CEP+∠ACD=∠CDP+∠P,即可得到結(jié)論.【詳解】(1)證明:∵在“對(duì)頂三角形”與中,∴,∵,∴,∵,∴,又∵∴;(2)∵比大20°,+=+,∴設(shè)=x,=y,則=x+20°,=y-20°,∵,∴∠ABC+∠ACB=180°-∠A=180°-=x+y,∴∠ABC+∠DCB=∠ABC+∠ACB-=x+y-x-20°=y-20°,∵∠ABC+∠DCB+=180°,∴y-20°+y=180°,解得:y=100°,∴=100°;(3)∵,是的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論