版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一、解答題1.問題情境:在平面直角坐標系xOy中有不重合的兩點A(x1,y1)和點B(x2,y2),小明在學(xué)習(xí)中發(fā)現(xiàn),若x1=x2,則AB∥y軸,且線段AB的長度為|y1﹣y2|;若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1﹣x2|;(應(yīng)用):(1)若點A(﹣1,1)、B(2,1),則AB∥x軸,AB的長度為.(2)若點C(1,0),且CD∥y軸,且CD=2,則點D的坐標為.(拓展):我們規(guī)定:平面直角坐標系中任意不重合的兩點M(x1,y1),N(x2,y2)之間的折線距離為d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:圖1中,點M(﹣1,1)與點N(1,﹣2)之間的折線距離為d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解決下列問題:(1)如圖1,已知E(2,0),若F(﹣1,﹣2),則d(E,F(xiàn));(2)如圖2,已知E(2,0),H(1,t),若d(E,H)=3,則t=.(3)如圖3,已知P(3,3),點Q在x軸上,且三角形OPQ的面積為3,則d(P,Q)=.解析:【應(yīng)用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)=5;(2)2或﹣2;(3)4或8.【分析】(應(yīng)用)(1)根據(jù)若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1?x2|,代入數(shù)據(jù)即可得出結(jié)論;(2)由CD∥y軸,可設(shè)點D的坐標為(1,m),根據(jù)CD=2,可得|0﹣m|=2,故可求出m,即可求解;(拓展)(1)根據(jù)兩點之間的折線距離公式,代入數(shù)據(jù)即可得出結(jié)論;(2)根據(jù)兩點之間的折線距離公式結(jié)合d(E,H)=3,即可得出關(guān)于t的含絕對值符號的一元一次方程,解之即可得出結(jié)論;(3)由點Q在x軸上,可設(shè)點Q的坐標為(x,0),根據(jù)三角形的面積公式結(jié)合三角形OPQ的面積為3即可求出x的值,再利用兩點之間的折線距離公式即可得出結(jié)論;【詳解】(應(yīng)用):(1)AB的長度為|﹣1﹣2|=3.故答案為:3.(2)由CD∥y軸,可設(shè)點D的坐標為(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴點D的坐標為(1,2)或(1,﹣2).故答案為:(1,2)或(1,﹣2).(拓展):(1)d(E,F(xiàn))=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案為:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案為:2或﹣2.(3)由點Q在x軸上,可設(shè)點Q的坐標為(x,0),∵三角形OPQ的面積為3,∴|x|×3=3,解得:x=±2.當點Q的坐標為(2,0)時,d(P,Q)=|3﹣2|+|3﹣0|=4;當點Q的坐標為(﹣2,0)時,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.故答案為:4或8.【點睛】本題是三角形綜合題目,考查了新定義、兩點間的距離公式、三角形面積等知識,讀懂題意并熟練運用兩點間的距離及兩點之間的折線距離公式是解題的關(guān)鍵.2.如圖,在平面直角坐標系中,已知,將線段平移至,點在軸正半軸上,,且.連接,,,.(1)寫出點的坐標為;點的坐標為;(2)當?shù)拿娣e是的面積的3倍時,求點的坐標;(3)設(shè),,,判斷、、之間的數(shù)量關(guān)系,并說明理由.解析:(1),;(2)點D的坐標為或;(3)之間的數(shù)量關(guān)系,或,理由見解析.【分析】(1)由二次根式成立的條件可得a和b的值,由平移的性質(zhì)確定BC∥OA,且BC=OA,可得結(jié)論;(2)分點D在線段OA和在OA延長線兩種情況進行計算;(3)分點D在線段OA上時,α+β=θ和在OA延長線α-β=θ兩種情況進行計算;【詳解】解:(1)∵,∴a=2,b=3,∴點C的坐標為(2,3),∵A(4,0),∴OA=BC=4,由平移得:BC∥x軸,∴B(6,3),故答案為:,;(2)設(shè)點D的坐標為∵△ODC的面積是△ABD的面積的3倍∴∴①如圖1,當點D在線段OA上時,由,得解得∴點D的坐標為②如圖2,當點D在OA得延長線上時,由,得解得∴點D的坐標為綜上,點D的坐標為或.(3)①如圖1,當點D在線段OA上時,過點D作DE∥AB,與CB交于點E.由平移知OC∥AB,∴DE∥OC∴又∴.②如圖2,當點D在OA得延長線上時,過點D作DE∥AB,與CB得延長線交于點E由平移知OC∥AB,∴DE∥OC∴又∴.綜上,之間的數(shù)量關(guān)系,或.【點睛】此題考查四邊形和三角形的綜合題,點的坐標和三角形面積的計算方法,平移得性質(zhì),平行線的性質(zhì)和判定,解題的關(guān)鍵是分點D在線段OA上,和OA延長線上兩種情況.3.在平面直角坐標系中,如圖正方形的頂點,坐標分別為,,點,坐標分別為,,且,以為邊作正方形.設(shè)正方形與正方形重疊部分面積為.(1)①當點與點重合時,的值為______;②當點與點重合時,的值為______.(2)請用含的式子表示,并直接寫出的取值范圍.解析:(1)①1;②;(2).【分析】(1)①②根據(jù)點F的坐標構(gòu)建方程即可解決問題.(2)分四種情形:①如圖1中,當1≤m≤2時,重疊部分是四邊形BEGN.②如圖2中,當0<m<1時,重疊部分是正方形EFGH.③如圖3中,-1<m<時,重疊部分是矩形AEHN.④如圖4中,當-≤m<0時,重疊部分是正方形EFGH.分別求解即可解決問題.【詳解】解:(1)①當點F與點B重合時,由題意3m=3,∴m=1.②當點F與點A重合時,由題意3m=-1,∴m=,故答案為1,.(2)①當時,如圖1.,..②當時,如圖2...③當時,如圖3.,.④當時,如圖4...綜上,.【點睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),平移變換,四邊形的面積等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,屬于中考常考題型.4.如圖,在平面直角坐標系中,已知△ABC,點A的坐標是(4,0),點B的坐標是(2,3),點C在x軸的負半軸上,且AC=6.(1)直接寫出點C的坐標.(2)在y軸上是否存在點P,使得S△POB=S△ABC若存在,求出點P的坐標;若不存在,請說明理由.(3)把點C往上平移3個單位得到點H,作射線CH,連接BH,點M在射線CH上運動(不與點C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.解析:(1)C(-2,0);(2)點P坐標為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明見解析.【分析】(1)由點A坐標可得OA=4,再根據(jù)C點x軸負半軸上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根據(jù)S△POB=S△ABC,可得OP=6,即可寫出點P的坐標;(3)先得到點H的坐標,再結(jié)合點B的坐標可得到BH//AC,然后根據(jù)點M在射線CH上,分點M在線段CH上與不在線段CH上兩種情況分別進行討論即可得.【詳解】(1)∵A(4,0),∴OA=4,∵C點x軸負半軸上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=×6×3=9,S△BOP=OP×2=OP,又∵S△POB=S△ABC,∴OP=×9=6,∴點P坐標為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明如下:∵把點C往上平移3個單位得到點H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如圖1,當點M在線段HC上時,過點M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如圖2,當點M在射線CH上但不在線段HC上時,過點M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;綜上,∠BMA=∠MAC±∠HBM.【點睛】本題考查了點的坐標,三角形的面積,點的平移,平行線的判定與性質(zhì)等知識,綜合性較強,正確進行分類并準確畫出圖形是解題的關(guān)鍵.5.如圖,在平面直角坐標系中,同時將點A(﹣1,0)、B(3,0)向上平移2個單位長度再向右平移1個單位長度,分別得到A、B的對應(yīng)點C、D.連接AC,BD(1)求點C、D的坐標,并描出A、B、C、D點,求四邊形ABDC面積;(2)在坐標軸上是否存在點P,連接PA、PC使S△PAC=S四邊形ABCD?若存在,求點P坐標;若不存在,請說明理由.解析:(1)(0,2),(4,2),見解析,ABDC面積:8;(2)存在,P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【解析】【分析】(1)根據(jù)向右平移橫坐標加,向上平移縱坐標加寫出點C、D的坐標即可,再根據(jù)平行四邊形的面積公式列式計算即可得解;(2)分點P在x軸和y軸上兩種情況,依據(jù)S△PAC=S四邊形ABCD求解可得.【詳解】(1)由題意知點C坐標為(﹣1+1,0+2),即(0,2),點D的坐標為(3+1,0+2),即(4,2),如圖所示,S四邊形ABDC=2×4=8;(2)當P在x軸上時,∵S△PAC=S四邊形ABCD,∴,∵OC=2,∴AP=8,∴點P的坐標為(7,0)或(﹣9,0);當P在y軸上時,∵S△PAC=S四邊形ABCD,∴,∵OA=1,∴CP=16,∴點P的坐標為(0,18)或(0,﹣14);綜上,點P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【點睛】本題考查了坐標與圖形性質(zhì),三角形的面積,坐標與圖形變化﹣平移,熟記各性質(zhì)是解題的關(guān)鍵.6.如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足,過C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點P,使得△ABC和△OCP的面積相等,若存在,求出點P坐標,若不存在,試說明理由.(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數(shù);②求:∠AED的度數(shù).解析:(1)a=-2,b=2;(2)P(0,-4)或(0,4);(3)①∠CAB+∠ODB=90°;②∠AED=45°.【分析】(1)根據(jù)非負數(shù)的性質(zhì)即可求得a、b的值;(2)先求得S△ABC=4,設(shè)P(0,t),根據(jù)S△OPC=OP×2=××2=4求得t值,即可求得點P的坐標;(3)①已知BD∥AC,根據(jù)兩直線平行,內(nèi)錯角相等可得∠CAB=∠OBD,由∠OBD+∠ODB=90°,即可得∠CAB+∠ODB=90°;②根據(jù)角平分線的定義及①中的結(jié)論,可求得∠3+∠4=45°;過點E作EF∥AC,即可得EF∥BD∥AC,根據(jù)平行線的性質(zhì)可得∠3=∠1,∠2=∠4,由此求得∠AED=∠1+∠2=∠4+∠3=45°.【詳解】(1)∵,∴a+2=0,b-2=0,∴a=-2,b=2;(2)∵a=-2,b=2,∴A(-2,0),C(2,2),∴S△ABC=AB?BC=×4×2=4;設(shè)P(0,t),∴S△OPC=OP×2=××2==4;∴t=4或t=-4,∴P(0,-4)或(0,4).(3)①∵BD∥AC,∴∠CAB=∠OBD,∵∠OBD+∠ODB=90°,∴∠CAB+∠ODB=90°;②∵AE,DE分別平分∠CAB,∠ODB,∴∠3=,∠4=,∵∠CAB+∠ODB=90°,∴∠3+∠4=+=45°,過點E作EF∥AC,∵BD∥AC,∴EF∥BD∥AC,∴∠3=∠1,∠2=∠4,∴∠AED=∠1+∠2=∠4+∠3=45°.【點睛】本題考查了坐標與圖形性質(zhì),熟知非負數(shù)的性質(zhì)、三角形的面積公式及平行線的性質(zhì)是解決問題的關(guān)鍵.7.如圖,在長方形中,為平面直角坐標系的原點,點的坐標為,點的坐標為且、滿足,點在第一象限內(nèi),點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動.(1)點的坐標為___________;當點移動5秒時,點的坐標為___________;(2)在移動過程中,當點到軸的距離為4個單位長度時,求點移動的時間;(3)在的線路移動過程中,是否存在點使的面積是20,若存在直接寫出點移動的時間;若不存在,請說明理由.解析:(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非負數(shù)的性質(zhì)可得a、b的值,據(jù)此可得點B的坐標;由點P運動速度和時間可得其運動5秒的路程,得到OP=10,從而得出其坐標;(2)先根據(jù)點P運動11秒判斷出點P的位置,再根據(jù)三角形的面積公式求解可得;(3)分為點P在OC、BC上分類計算即可.【詳解】解:(1)∵a,b滿足,∴a=8,b=12,∴點B(8,12);當點P移動5秒時,其運動路程為5×2=10,∴OP=10,則點P坐標為(0,10),故答案為:(8,12)、(0,10);(2)由題意可得,第一種情況,當點P在OC上時,點P移動的時間是:4÷2=2秒,第二種情況,當點P在BA上時.點P移動的時間是:(12+8+8)÷2=14秒,所以在移動過程中,當點P到x軸的距離為4個單位長度時,點P移動的時間是2秒或14秒.(3)如圖1所示:∵△OBP的面積=20,∴OP?BC=20,即×8×OP=20.解得:OP=5.∴此時t=2.5s如圖2所示;∵△OBP的面積=20,∴PB?OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此時t=,綜上所述,滿足條件的時間t=2.5s或【點睛】本題考查矩形的性質(zhì),三角形的面積,坐標與圖形的性質(zhì),解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.8.已知:ABCD.點E在CD上,點F,H在AB上,點G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數(shù)量關(guān)系(用含α的式子表示∠M)?請寫出你的猜想,并加以證明.解析:(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質(zhì)得到,等量代換得出,即可根據(jù)“同位角相等,兩直線平行”得解;(2)過點作,過點作,根據(jù)平行線的性質(zhì)及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點作,過點作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點睛】此題考查了平行線的判定與性質(zhì),熟記平行線的判定與性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.9.如圖1,已知直線m∥n,AB是一個平面鏡,光線從直線m上的點O射出,在平面鏡AB上經(jīng)點P反射后,到達直線n上的點Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點O以適當?shù)慕嵌壬涑龊?,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說明理由.解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問題的設(shè)置環(huán)環(huán)相扣、前為后用的設(shè)置目的.10.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請說明理由;(3)當AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關(guān)系.解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.11.點A,C,E在直線l上,點B不在直線l上,把線段AB沿直線l向右平移得到線段CD.(1)如圖1,若點E在線段AC上,求證:B+D=BED;(2)若點E不在線段AC上,試猜想并證明B,D,BED之間的等量關(guān)系;(3)在(1)的條件下,如圖2所示,過點B作PB//ED,在直線BP,ED之間有點M,使得ABE=EBM,CDE=EDM,同時點F使得ABE=nEBF,CDE=nEDF,其中n≥1,設(shè)BMD=m,利用(1)中的結(jié)論求BFD的度數(shù)(用含m,n的代數(shù)式表示).解析:(1)見解析;(2)當點E在CA的延長線上時,∠BED=∠D-∠B;當點E在AC的延長線上時,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如圖1中,過點E作ET∥AB.利用平行線的性質(zhì)解決問題.(2)分兩種情形:如圖2-1中,當點E在CA的延長線上時,如圖2-2中,當點E在AC的延長線上時,構(gòu)造平行線,利用平行線的性質(zhì)求解即可.(3)利用(1)中結(jié)論,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解決問題即可.【詳解】解:(1)證明:如圖1中,過點E作ET∥AB.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如圖2-1中,當點E在CA的延長線上時,過點E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如圖2-2中,當點E在AC的延長線上時,過點E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如圖,設(shè)∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m=2x+2y,∴x+y=m,∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,∴∠BFD===.【點睛】本題屬于幾何變換綜合題,考查了平行線的性質(zhì),角平分線的定義等知識,解題的關(guān)鍵是學(xué)會條件常用輔助線,構(gòu)造平行線解決問題,屬于中考??碱}型.12.已知,點為平面內(nèi)一點,于.(1)如圖1,求證:;(2)如圖2,過點作的延長線于點,求證:;(3)如圖3,在(2)問的條件下,點、在上,連接、、,且平分,平分,若,,求的度數(shù).解析:(1)見解析;(2)見解析;(3).【分析】(1)先根據(jù)平行線的性質(zhì)得到,然后結(jié)合即可證明;(2)過作,先說明,然后再說明得到,最后運用等量代換解答即可;(3)設(shè)∠DBE=a,則∠BFC=3a,根據(jù)角平分線的定義可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根據(jù)三角形內(nèi)角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度數(shù)表達式,再根據(jù)平行的性質(zhì)可得∠AFC+∠NCF=180°,代入即可算出a的度數(shù),進而完成解答.【詳解】(1)證明:∵,∴,∵于,∴,∴,∴;(2)證明:過作,∵,∴,又∵,∴,∴,∵,∴,∴,∴;(3)設(shè)∠DBE=a,則∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì)及角的計算,熟練應(yīng)用平行線的性質(zhì)、角平分線的性質(zhì)是解答本題的關(guān)鍵.13.直線AB∥CD,點P為平面內(nèi)一點,連接AP,CP.(1)如圖①,點P在直線AB,CD之間,當∠BAP=60°,∠DCP=20°時,求∠APC的度數(shù);(2)如圖②,點P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,點P在直線CD下方,當∠BAK=∠BAP,∠DCK=∠DCP時,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.解析:(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進行計算即可;(2)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進而得到∠AKC=∠APC;(3)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據(jù)已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是作出平行線構(gòu)造內(nèi)錯角相等計算.14.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結(jié)FA、FB,E是射線FA上的一點,若,,且,求n的值.解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 緯編工崗前跨領(lǐng)域知識考核試卷含答案
- 栓皮制品工崗前技術(shù)實操考核試卷含答案
- 珍珠巖焙燒工操作規(guī)程水平考核試卷含答案
- 紋版復(fù)制工達標水平考核試卷含答案
- 信息通信網(wǎng)絡(luò)測量員安全管理模擬考核試卷含答案
- 煤層氣排采工9S考核試卷含答案
- 電線電纜拉制工安全防護知識考核試卷含答案
- 酒精發(fā)酵工操作測試考核試卷含答案
- 汽車飾件制造工安全宣教水平考核試卷含答案
- 2024年沽源縣事業(yè)單位聯(lián)考招聘考試真題匯編附答案
- 2026年新通信安全員c證考試題及答案
- 酒店物業(yè)管理合同范本
- 醫(yī)療質(zhì)量改進中文書書寫能力提升路徑
- 血乳酸在急危重癥應(yīng)用的專家共2026
- STM32G4入門與電機控制實戰(zhàn)
- 2025年中共深圳市龍華區(qū)委黨校博士后公開招聘(廣東)筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 快遞安檢協(xié)議書
- 香港專業(yè)服務(wù)助力中國內(nèi)地企業(yè)出海成功案例實錄
- 人文護理:護理與人文關(guān)懷的國際化趨勢
- 2025年國家義務(wù)教育質(zhì)量監(jiān)測小學(xué)四年級勞動教育模擬測試題及答案
- 2025年及未來5年中國瀝青混凝土行業(yè)市場供需格局及行業(yè)前景展望報告
評論
0/150
提交評論