版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、若關于x的一元二次方程x2﹣ax=0的一個解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.22、在正方形網格中,每個小正方形的頂點稱為格點,以格點為頂點的三角形叫做格點三角形.如圖,△ABC是格點三角形,在圖中的6×6正方形網格中作出格點三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格點三角形△ADE只算一個),這樣的格點三角形一共有()A.4個 B.5個 C.6個 D.7個3、如圖1,點Q為菱形ABCD的邊BC上一點,將菱形ABCD沿直線AQ翻折,點B的對應點P落在BC的延長線上.已知動點M從點B出發(fā),在射線BC上以每秒1個單位長度運動.設點M運動的時間為x,△APM的面積為y.圖2為y關于x的函數(shù)圖象,則菱形ABCD的面積為(
)A.12 B.24 C.10 D.204、下列方程:①;②;③;④;⑤.是一元二次方程的是(
)A.①② B.①②④⑤ C.①③④ D.①④⑤5、圖,在△ABC中,AB=AC,四邊形ADEF為菱形,O為AE,DF的交點,S△ABC=8,則S菱形ADEF=()A.4 B.4 C.4 D.46、如圖,ABC是等邊三角形,點D、E分別在BC、AC上,且∠ADE=60°,AB=9,BD=3,則CE的長等于()A.1 B. C. D.2二、多選題(6小題,每小題2分,共計12分)1、矩形一定具有的性質是().A.對角線相等 B.內角和為180° C.鄰邊相等 D.對角互補2、如圖,在矩形、銳角三角形、正五邊形、直角三角形的外邊加一個寬度一樣的外框,保證外框的邊與原圖形的對應邊平行,則外框與原圖一定相似的有()A. B.C. D.3、用配方法解下列方程,配方錯誤的是(
)A.化為 B.化為C.化為 D.化為4、如圖,在⊙O中,AB為直徑,BC為切線,弦ADOC,直線CD交BA的延長線于點E,連接BD.下列結論正確的是(
)A.CD是⊙O的切線 B.CO⊥DBC.△EDA∽△EBD D.5、如圖,△ABC中,P為AB上點,在下列四個條件中能確定△APC和△ACB相似的是(
)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.6、(多選)若數(shù)使關于的一元二次方程有兩個不相等的實數(shù)解,且使關于的分式方程的解為非負整數(shù),則滿足條件的的值為(
)A.1 B.3 C.5 D.7第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、《九章算術》中記載了一種測量井深的方法.如圖所示,在井口B處立一根垂直于井口的木桿,從木桿的頂端D觀察水岸C,視線與井口的直徑交于點E,如果測得米,米,米,那么井深為______米.2、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內旋轉,點P的對應點為點Q,連接AQ,DQ.當∠ADQ=90°時,AQ的長為______.3、如圖,AB,CD相交于O點,△AOC∽△BOD,OC:OD=1:2,AC=5,則BD的長為______.4、在平面直角坐標系中,點O為坐標原點,點A的坐標為(3,4),點B的坐標為(7,0),D,E分別是線段AO,AB上的點,以DE所在直線為對稱軸,把△ADE作軸對稱變換得△A′DE,點A′恰好在x軸上,若△OA′D與△OAB相似,則OA′的長為________.(結果保留2個有效數(shù)字)5、如圖,點D,E分別在△ABC的邊AC,AB上,△ADE∽△ABC,M,N分別是DE,BC的中點,若=,則=__.6、如果關于的一元二次方程有實數(shù)根,那么的取值范圍是___.7、如果關于的一元二次方程的一個解是,那么代數(shù)式的值是___________.8、如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與四邊形的面積之比為___
四、解答題(6小題,每小題10分,共計60分)1、已知反比例函數(shù)y=(m為常數(shù))的圖象在第一、三象限.(1)求m的取值范圍;(2)如圖,若該反比例函數(shù)的圖象經過?ABOD的頂點D,點A,B的坐標分別為(0,3),(﹣2,0),求出該反比例函數(shù)的解析式;(3)若E(x1,y1),F(xiàn)(x2,y2)都在該反比例函數(shù)的圖象上,且x1>x2>0,則y1和y2有怎樣的大小關系?2、如圖,與交于點O,,E為延長線上一點,過點E作,交的延長線于點F.(1)求證;(2)若,求的長.3、如圖,在平面直角坐標系中,△ABC的BC邊與x軸重合,頂點A在y軸的正半軸上,線段OB,OC()的長是關于x的方程的兩個根,且滿足CO=2AO.(1)求直線AC的解析式;(2)若P為直線AC上一個動點,過點P作PD⊥x軸,垂足為D,PD與直線AB交于點Q,設△CPQ的面積為S(),點P的橫坐標為a,求S與a的函數(shù)關系式;(3)點M的坐標為,當△MAB為直角三角形時,直接寫出m的值.4、如圖,已知正方形點在邊上,以為邊在左側作正方形;以為鄰邊作平行四邊形連接.(1)判斷和的數(shù)量及位置關系,并說明理由;(2)將繞點順時針旋轉,在旋轉過程中,和的數(shù)量及位置關系是否發(fā)生變化?請說明理由.5、解方程(組):(1)(2);(3)x(x-7)=8(7-x).6、如圖,在菱形ABCD中,AB=6,∠DAB=60°,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.(1)求證:四邊形AMDN是平行四邊形;(2)填空:①當AM的值為時,四邊形AMDN是矩形;②當AM的值為時,四邊形AMDN是菱形.-參考答案-一、單選題1、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選C.【考點】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.2、C【解析】【分析】根據(jù)題意,得出ABC的三邊之比,并在直角坐標系中找出與ABC各邊長成比例的相似三角形,并在直角坐標系中無一遺漏地表示出來.【詳解】解:ABC的三邊之比為,如圖所示,可能出現(xiàn)的相似三角形共有以下六種情況:所以使得△ADE∽△ABC的格點三角形一共有6個,故選:C.【考點】本題考察了在直角坐標系中畫出與已知三角形相似的圖形,解題的關鍵在于找出與已知三角形各邊長成比例的三角形,并在直角坐標系中無一遺漏地表示出來.3、D【解析】【分析】由圖2,可知BP=6,S△ABP=12,由圖1翻折可知,AQ⊥BP,進而得出AQ=4,由勾股定理,可知BC=AB=5,菱形ABCD的面積為BC×AQ即可求出.【詳解】解:由圖2,得BP=6,S△ABP=12∴AQ=4由翻折可知,AQ⊥BP由勾股定理,得BC=AB==5∴菱形ABCD的面積為BC×AQ=5×4=20故選:D【考點】本題是一道幾何變換綜合題,解決本題主要用到勾股定理,翻折的性質,根據(jù)函數(shù)圖象找出幾何圖形中的對應關系是解決本題的關鍵.4、D【解析】【分析】根據(jù)一元二次方程的定義進行判斷.【詳解】①該方程符合一元二次方程的定義;②該方程中含有2個未知數(shù),不是一元二次方程;③該方程含有分式,它不是一元二次方程;④該方程符合一元二次方程的定義;⑤該方程符合一元二次方程的定義.綜上,①④⑤一元二次方程.故選:D.【考點】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是2.5、C【解析】【分析】根據(jù)菱形的性質,結合AB=AC,得出DF為△ABC的中位線,DF∥BC,,從而得出AE為△ABC的高,得出,再根據(jù)菱形的面積公式,即可得出菱形的面積.【詳解】解:∵四邊形ADEF為菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正確.故選:C.【考點】本題主要考查了菱形的性質,中位線的性質,等腰三角形的性質和判斷,平行線的性質,菱形的面積,三角形面積的計算,根據(jù)菱形的性質和等腰三角形的性質得出DF為△ABC的中位線,是解題的關鍵.6、D【解析】【分析】通過△ABD∽△DCE,可得,即可求解.【詳解】解:∵△ABC是等邊三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故選:D.【考點】本題考查了三角形的相似,做題的關鍵是△ABD∽△DCE.二、多選題1、AD【解析】【分析】根據(jù)矩形的性質依次進行判斷即可.【詳解】解:A、矩形的對角線相等,正確;B、矩形的內角和為360°,選項錯誤;C、矩形的鄰邊不一定相等,選項錯誤;D、矩形的對角相等均為90°,所以對角互補,正確;故選:AD.【考點】題目主要考查矩形的性質,理解矩形的性質是解題關鍵.2、BCD【解析】【分析】根據(jù)相似多邊形的判定定理對各個選項進行分析,從而確定最后答案.【詳解】解:矩形不相似,因為其對應角的度數(shù)一定相同,但對應邊的比值不一定相等,不符合相似的條件,故A不符合題意;銳角三角形、正五邊形、直角三角形的原圖與外框相似,因為其對應角均相等,對應邊均對應成比例,符合相似的條件,故B、C、D符合題意.故選BCD.【考點】此題主要考查了相似圖形判定,注意邊數(shù)相同、各角對應相等、各邊對應成比例的兩個多邊形是相似多邊形.3、BD【解析】【分析】根據(jù)配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1,(3)等式兩邊同時加上一次項系數(shù)一半的平方即可得到結論.【詳解】A.化為,正確,不符合題意;B.化為,錯誤,符合題意;C.化為,正確,不符合題意;D.化為,錯誤,符合題意.故選:BD.【考點】此題考查了配方法解一元二次方程,屬于基礎題,熟練掌握配方法的一般步驟是解題關鍵.4、ABC【解析】【分析】由切線的性質得∠CBO=90°,首先連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;根據(jù)全等三角形的性質得到CD=CB,根據(jù)線段垂直平分線的判定定理得到即CO⊥DB;根據(jù)余角的性質得到∠ADE=∠BDO,等量代換得到∠EDA=∠DBE,根據(jù)相似三角形的判定定理得到△EDA∽△EBD;根據(jù)相似三角形的性質得到,于是得到ED?BC=BO?BE.【詳解】解:A.證明:連接DO.∵AB為⊙O的直徑,BC為⊙O的切線,∴∠CBO=90°,∵ADOC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵點D在⊙O上,∴CD是⊙O的切線;故選項正確,符合題意;B.證明:∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故選項正確,符合題意;C.證明:∵AB為⊙O的直徑,DC為⊙O的切線,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故選項正確,符合題意;D.證明:∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED?BC=BO?BE,故選項錯誤,不符合題意.故選:ABC.【考點】本題主要考查了切線的判定、全等三角形的判定與性質以及相似三角形的判定與性質,注意掌握輔助線的作法,注意數(shù)形結合思想的應用是解答此題的關鍵.5、ABD【解析】【分析】根據(jù)有兩組角對應相等的兩個三角形相似可對A、B、C進行判斷;根據(jù)兩組對應邊的比相等且夾角對應相等的兩個三角形相似可對D進行判斷.【詳解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故選項A正確,符合題意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故選項B正確,符合題意;∵∠CAP=∠BAC,只有一組角相等,∴不能判斷△APC和△ACB相似,故選項C錯誤,不符合題意;∵,∠A是夾角,∴△APC∽△ACB,故選項D正確,符合題意.故答案為:ABD.【考點】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似;有兩組角對應相等的兩個三角形相似.6、AC【解析】【分析】根據(jù)一元二次方程根的判別式及分式有意義的條件和分式方程的解為非負整數(shù)分別求出a的取值范圍,即可得答案.【詳解】∵關于的一元二次方程有兩個不相等的實數(shù)解,∴,解得:,∵,∴,解得:,∵關于的分式方程的解為非負整數(shù),∴且,解得:且,∴且a≠3,∵是整數(shù),∴a=1或5,故選:AC.【考點】本題考查一元二次方程根的判別式、解分式方程及分式有意義的條件,正確得出兩個不等式的解集是解題關鍵,注意分式的分母不為0的隱含條件,避免漏解.三、填空題1、7【解析】【分析】由題意易得,則有,然后問題可求解.【詳解】解:∵,∴,∴,∵米,米,米,∴,解得米,故井深AC為7米.【考點】本題主要考查相似三角形的性質與判定,熟練掌握相似三角形的性質與判定是解題的關鍵.2、或##或【解析】【分析】連接,根據(jù)題意可得,當∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉的性質,勾股定理,直角三角形斜邊上中線的性質,確定點的位置是解題的關鍵.3、10【解析】【分析】根據(jù)相似三角形的對應邊的比相等列式計算即可.【詳解】∵△AOC∽△BOD,∴,即,解得:BD=10.故答案為10.【考點】本題考查了相似三角形的性質,掌握相似三角形的對應角相等,對應邊的比相等是解題的關鍵.4、2.0或3.3【解析】【分析】由點A的坐標為(3,4),點B的坐標為(7,0),可得OA=5,OB=7,AB=4,然后分別由△OA′D∽△OAB與△OA′D∽△OBA,根據(jù)相似三角形的對應邊成比例,即可得答案.【詳解】∵點A的坐標為(3,4),點B的坐標為(7,0),∴OA==5,OB=7,AB==4,若△OA′D∽△OAB,則,設AD=x,則OD=5﹣x,A′D=x,即,解得:x≈2.2,∴,∴OA′=2.0;若△OA′D∽△OBA,則,同理:可得:OA′≈3.3.故答案為2.0或3.3.【考點】此題考查了相似三角形的性質與折疊的知識.注意數(shù)形結合與方程思想的應用,小心別漏解是解題關鍵.5、【解析】【分析】根據(jù)相似三角形對應中線的比等于相似比求出,根據(jù)相似三角形面積的比等于相似比的平方解答即可.【詳解】解:∵M,N分別是DE,BC的中點,∴AM、AN分別為△ADE、△ABC的中線,∵△ADE∽△ABC,∴==,∴=()2=,故答案為:.【考點】本題考查了相似三角形的性質,掌握相似三角形面積的比等于相似比的平方、相似三角形對應中線的比等于相似比是解題的關鍵.6、【解析】【分析】由一元二次方程根與系數(shù)的關鍵可得:從而列不等式可得答案.【詳解】解:關于的一元二次方程有實數(shù)根,故答案為:【考點】本題考查的是一元二次方程根的判別式,掌握一元二次方程根的判別式是解題的關鍵.7、【解析】【分析】根據(jù)關于的一元二次方程的一個解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關于的一元二次方程的一個解是,,,.故答案為:2020.【考點】本題考查一元二次方程的解,解答本題的關鍵是明確一元二次方程的解的含義.8、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根據(jù)在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.【詳解】解:連接BE∵DE:EC=3:1∴設DE=3k,EC=k,則CD=4k∵ABCD是平行四邊形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1設S△BDE=3a,S△BEC=a則S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴則△DEF的面積與四邊形BCEF的面積之比9:19故答案為:.【考點】本題考查了平行線分線段成比例,平行四邊形的性質,關鍵是運用在高相等的情況下三角形面積比等于底邊的比求三角形的面積比值.四、解答題1、(1)m<;(2)該反比例函數(shù)的解析式為y=;(3)y1<y2.【解析】【分析】(1)由圖象在第一、三象限可得關于m的不等式,然后解不等式即可;(2)先根據(jù)平行四邊形的性質求出D點的坐標,然后將D點的坐標代入y=可求得1-2m的值即可;(3)利用反比例函數(shù)的增減性解答即可.【詳解】解:(1)∵y=的圖象在第一、三象限,∴1﹣2m>0,∴m<;(2)∵四邊形ABOD為平行四邊形,∴AD∥OB,AD=OB=2,∴D點坐標為(2,3),∴1﹣2m=2×3=6,∴該反比例函數(shù)的解析式為y=;(3)∵x1>x2>0,∴E,F(xiàn)兩點都在第一象限,又∵該反比例函數(shù)在每一個象限內,函數(shù)值y都隨x的增大而減小,∴y1<y2.【考點】本題考查了反比例函數(shù)的解析式、反比例函數(shù)的性質以及反比例函數(shù)與幾何的綜合,掌握反比例函數(shù)的定義及性質是解答本題的關鍵.2、(1)證明見解析;(2)【解析】【分析】(1)直接利用“AAS”判定兩三角形全等即可;(2)先分別求出BE和DC的長,再利用相似三角形的判定與性質進行計算即可.【詳解】解:(1)∵,又∵,∴;(2)∵,∴,,∵,∴,∴,∴,∴,∴的長為.【考點】本題考查了全等三角形的判定與性質、平行線分線段成比例的推論、相似三角形的判定與性質等,解決本題的關鍵是牢記相關概念與公式,能結合圖形建立線段之間的關聯(lián)等,本題較基礎,考查了學生的幾何語言表達和對基礎知識的掌握與應用等.3、(1);(2);(3)m的值為-3或-1或2或7;【解析】【分析】(1)根據(jù)一元二次方程的解求出OB和OC的長度,然后得到點B,點C坐標和OA的長度,進而得到點A坐標,最后使用待定系數(shù)法即可求出直線AC的解析式;(2)根據(jù)點A,點B坐標使用待定系數(shù)法求出直線AB的解析式,根據(jù)直線AB解析式和直線AC解析式求出點P,Q,D坐標,進而求出PQ和CD的長度,然后根據(jù)三角形面積公式求出S,最后對a的值進行分類討論即可;(3)根據(jù)△MAB的直角頂點進行分類討論,然后根據(jù)勾股定理求解即可.(1)解:解方程得,,∵線段OB,OC()的長是關于x的方程的兩個根,∴OB=1,OC=6,∴,,∵CO=2AO,∴OA=3,∴,設直線AC的解析式為,把點,代入得,解得,∴直線AC的解析式為;(2)解:設直線AB的解析式為y=px+q,把,代入直線AB解析式得,解得,∴直線AB的解析式為,∵PD⊥x軸,垂足為D,PD與直線AB交于點Q,點P的橫坐標為a,∴,,,∴,,∴,當點P與點A或點C重合時,即當a=0或時,此時S=0,不符合題意,當時,,當時,,當時,,∴;(3)解:∵,,,∴,,,當∠MAB=90°時,,∴,解得,當∠ABM=90°時,,∴,解得m=7,當∠AMB=90°時,,∴,解得,,∴m的值為-3或-1或2或7.【考點】本題考查解一元二次方程、待定系數(shù)法求一次函數(shù)解析式、三角形面積公式、勾股定理,正確應用分類討論思想是解題關鍵.4、(1);;理由見解析;(2)與的數(shù)量及位置關系都不變;答案見解析.【解析】【分析】(1)證明,由全等三角形的性質得出,,得出,則可得出結論;(2)證明,由全等三角形的性質得出,,由平行線的性質證出,則可得出結論.【詳解】解:(1),.由題意可得,平行四邊形為矩形,,,,,,,,,設與交于點,則,即.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水產蛋白提煉工崗前安全文明考核試卷含答案
- 白酒微生物培菌工常識水平考核試卷含答案
- 紋版連接工安全培訓競賽考核試卷含答案
- 潛水救生員崗前深度考核試卷含答案
- 甘油水處理工成果水平考核試卷含答案
- 海信智能家居培訓
- 橋梁安全教育培訓
- 酒店客房服務滿意度調查制度
- 酒店安全防范措施制度
- 年產20萬件工程機械配件技術改造項目可行性研究報告模板-立項備案
- 2025年新版安全生產法知識考試試卷(含答案)
- 2026年齊齊哈爾高等師范??茖W校單招職業(yè)技能測試題庫必考題
- 輸變電工程安全教育課件
- 物業(yè)項目綜合服務方案
- 第9章 施工中的難點與要點分析
- 大健康行業(yè)經營保障承諾函(7篇)
- 2025-2026學年北京市西城區(qū)初二(上期)期末考試物理試卷(含答案)
- 綠植租賃合同
- 狼蒲松齡原文及翻譯
- 2023初會職稱《經濟法基礎》習題庫及答案
- 比亞迪Forklift軟件使用方法
評論
0/150
提交評論