版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省奉化市中考數(shù)學真題分類(勾股定理)匯編定向訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、觀察“趙爽弦圖”(如圖),若圖中四個全等的直角三角形的兩直角邊分別為a,b,,根據(jù)圖中圖形面積之間的關(guān)系及勾股定理,可直接得到等式(
)A. B.C. D.2、如圖,長方形紙片ABCD中,AB=3cm,AD=9cm,將此長方形紙片折疊,使點D與點B重合,點C落在點H的位置,折痕為EF,則△ABE的面積為(
)A.6cm2 B.8cm2 C.10cm2 D.12cm23、在直角三角形中,若勾為3,股為4,則弦為()A.5 B.6 C.7 D.84、一個直角三角形的兩條直角邊邊長分別為6和8,則斜邊上的高為(
)A.4.5 B.4.6 C.4.8 D.55、《九章算術(shù)》是我國古代數(shù)學名著,記載著這樣一個問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長各幾何?”大意是:有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達池邊的水面.水的深度與這根蘆葦?shù)拈L度分別是多少?設(shè)蘆葦?shù)拈L度為x尺,則可列方程為()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)26、如圖,在由邊長為1的7個正六邊形組成的網(wǎng)格中,點A,B在格點上.若再選擇一個格點C,使△ABC是直角三角形,且每個直角三角形邊長均大于1,則符合條件的格點C的個數(shù)是(
)A.2 B.4 C.5 D.67、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.6第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、我國古代數(shù)學著作《九章算術(shù)》中記載了一個問題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長度單位,1丈10尺)其大意為:有一個水池,水面是一個邊長為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點,它的頂端B恰好到達池邊的水面D處,問水的深度是多少?則水深DE為_____尺.2、如圖,Rt△ABC中,∠C=90°,在△ABC外取點D,E,使AD=AB,AE=AC,且α+β=∠B,連結(jié)DE.若AB=4,AC=3,則DE=__.3、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.4、如圖,在中,,分別以,,邊為直徑作半圓,圖中陰影部分在數(shù)學史上稱為“希波克拉底月牙”,當,時,陰影部分的面積為________.5、勘測隊按實際需要構(gòu)建了平面直角坐標系,并標示了A,B,C三地的坐標,數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過A,B兩地.(1)A,B間的距離為______km;(2)計劃修一條從C到鐵路AB的最短公路l,并在l上建一個維修站D,使D到A,C的距離相等,則C,D間的距離為______km.6、《九章算術(shù)》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為______.7、如圖,矩形ABCD中,AD=6,AB=8.點E為邊DC上的一個動點,△AD'E與△ADE關(guān)于直線AE對稱,當△CD'E為直角三角形時,DE的長為__.8、云頂滑雪公園是北京2022年冬奧會7個雪上競賽場館中唯一利用現(xiàn)有雪場改造而成的.下圖左右兩幅圖分別是公園內(nèi)云頂滑雪場U型池的實景圖和示意圖,該場地可以看作是從一個長方體中挖去了半個圓柱而成,它的橫截面圖中半圓的半徑為,其邊緣,點E在上,.一名滑雪愛好者從點A滑到點E,他滑行的最短路線長為_________m.三、解答題(7小題,每小題10分,共計70分)1、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.2、勾股定理被譽為“幾何明珠”,在數(shù)學的發(fā)展歷程中占有舉足輕重的地位.它是初中數(shù)學中的重要知識點之一,也是初中學生以后解決數(shù)學問題和實際問題中常常運用到的重要知識,因此學好勾股定理非常重要.學習數(shù)學“不僅要知其然,更要知其所以然”,所以,我們要學會勾股定理的各種證明方法.請你利用如圖圖形證明勾股定理:已知:如圖,四邊形ABCD中,BD⊥CD,AE⊥BD于點E,且△ABE≌△BCD.求證:AB2=BE2+AE2.3、閱讀與思考:請閱讀下列材料,并完成相應的任務.若直角三角形的三邊的長都是正整數(shù),則三邊的長為“勾股數(shù)”.構(gòu)造勾股數(shù),就是要尋找3個正整數(shù),使它們滿足“其中兩個數(shù)的平方和(或平方差)等于第三個數(shù)的平方”.通過觀察常見勾股數(shù)“3,4,5”;“5,12,13”;“7,24,25”……猜想當一組勾股數(shù)中(),最小數(shù)為奇數(shù)時,另兩個正整數(shù)和滿足比且,解得,.任務:(1)請證明猜想成立,即證明,,構(gòu)成勾股數(shù).(2)若一組勾股數(shù)中,最小數(shù)為9,則另兩個數(shù)分別是________和________.4、如圖,點B,F(xiàn),C,E在同一條直線上,,且.(1)求證:.(2)若,,,求BE的長.5、2020年春季“新冠肺炎”在武漢全面爆發(fā),蔓延全國,危及到人民生命安全,為了積極響應國家防控政策,雙流區(qū)某鎮(zhèn)政府采用了移動宣講的形式進行宣傳防控措施,如圖,筆直公路的一側(cè)點處有一村莊,村莊到公路的距離為600米,假設(shè)宣講車周圍1000米以內(nèi)能聽到廣播宣傳,宣講車在公路上沿方向行駛時:(1)請問村莊能否聽到宣傳,請說明理由;(2)如果能聽到,已知宣講車的速度是200米/分鐘,那么村莊總共能聽到多長時間的宣傳?6、如圖,是一塊草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求這塊草坪的面積.7、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹被折斷,樹的頂部落在離樹根8米處,即,求這棵樹在離地面多高處被折斷(即求AC的長度)?-參考答案-一、單選題1、C【解析】【分析】根據(jù)小正方形的面積等于大正方形的面積減去4個直角三角形的面積可得問題的答案.【詳解】標記如下:∵,∴(a﹣b)2=a2+b2﹣4=a2﹣2ab+b2.故選:C.【考點】此題考查的是利用勾股定理的證明,可以完全平方公式進行證明,掌握面積差得算式是解決此題關(guān)鍵.2、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長方形折疊,使點與點重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.3、A【解析】【分析】直接根據(jù)勾股定理求解即可.【詳解】解:∵在直角三角形中,勾為3,股為4,∴弦為,故選A.【考點】本題考查了勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)勾股定理求出斜邊的長,再根據(jù)面積法求出斜邊的高.【詳解】解:設(shè)斜邊長為c,高為h.由勾股定理可得:c2=62+82,則c=10,直角三角形面積S=×6×8=×c×h,可得h=4.8,故選:C.【考點】本題考查了勾股定理,利用勾股定理求直角三角形的邊長和利用面積法求直角三角形的高是解決此類題的關(guān)鍵.5、C【解析】【分析】首先設(shè)蘆葦長x尺,則水深為(x?1)尺,根據(jù)勾股定理可得方程(x?1)2+52=x2.【詳解】解:設(shè)蘆葦長x尺,由題意得:(x?1)2+52=x2,即x2﹣52=(x﹣1)2故選:C.【考點】此題主要考查了勾股定理的應用,解題的關(guān)鍵是讀懂題意,從題中抽象出勾股定理這一數(shù)學模型.6、D【解析】【分析】分三種情況討論,當∠A=90°,或∠B=90°,或∠C=90°時,分別畫出符合條件的圖形,即可解答.【詳解】解:分三種情況討論,當∠A=90°,或∠B=90°,或∠C=90°如圖符合條件的格點C的個數(shù)是6個故選:D.【考點】本題考查正多邊形和圓的性質(zhì)、直角三角形的判定與性質(zhì)、直徑所對的圓周角是90°等知識,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.7、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.二、填空題1、12【解析】【分析】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點】本題主要考查勾股定理的應用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.2、5【解析】【分析】根據(jù)角度轉(zhuǎn)換,得到三角形ADE是直角三角形,然后運用勾股定理計算出DE的長.【詳解】∵∠B+∠C+∠BAC=180°,∠C=90°,∴∠B+∠BAC=90°.∵α+β=∠B,∴∠DAE=α+β+∠BAC==∠B+∠BAC=90°.∴△ADE是直角三角形.∴DE===5.【考點】本題主要考查到運用勾股定理求長度,說明三角形ADE是直角三角形是解題的關(guān)鍵.3、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關(guān)系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.4、24【解析】【分析】根據(jù)勾股定理得到AC2=AB2-BC2,先求解AC,再根據(jù)陰影部分的面積等于直角三角形的面積加上以AC,BC為直徑的半圓面積,再減去以AB為直徑的半圓面積即可.【詳解】解:由勾股定理得,AC2=AB2-BC2=64,則陰影部分的面積,故答案為24.【考點】本題考查的是勾股定理、半圓面積計算,掌握勾股定理和半圓面積公式是解題的關(guān)鍵.5、
20
13【解析】【分析】(1)由垂線段最短以及根據(jù)兩點的縱坐標相同即可求出AB的長度;(2)根據(jù)A、B、C三點的坐標可求出CE與AE的長度,設(shè)CD=x,根據(jù)勾股定理即可求出x的值.【詳解】(1)由A、B兩點的縱坐標相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過點C作l⊥AB于點E,連接AC,作AC的垂直平分線交直線l于點D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設(shè)CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點】本題考查了勾股定理,解題的關(guān)鍵是根據(jù)A、B、C三點的坐標求出相關(guān)線段的長度,本題屬于中等題型.6、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長為尺,根據(jù)題意可列方程為:.故答案為:.【考點】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應用.7、3或6【解析】【分析】分兩種情況分別求解,(1)當∠CED′=90°時,如圖(1),根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=45′,得DE=AD=6;(2)當∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設(shè)DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關(guān)的值,計算即可.【詳解】解:當∠CED′=90°時,如圖(1),∵∠CED′=90°,根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設(shè)DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點】本題考查了矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì),熟練掌握矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì)的綜合應用,分情況討論,作出圖形是解題關(guān)鍵.8、【解析】【分析】根據(jù)題意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,線段AE即為滑行的最短路線長.在Rt△ADE中,根據(jù)勾股定理即可求出滑行的最短路線長.【詳解】解:如圖,根據(jù)題意可知:AD==12,DE=CD﹣CE=24﹣4=20,線段AE即為滑行的最短路線長.在Tt△ADE中,根據(jù)勾股定理,得AE=(m).故答案為:【考點】本題考查了平面展開﹣最短路徑問題,解決本題的關(guān)鍵是掌握圓柱的側(cè)面展開圖是矩形,利用勾股定理求最短距離.三、解答題1、(1)A、C兩地之間的距離為14.1km;(2)C港在A港北偏東15°的方向上.【解析】【分析】(1)根據(jù)方位角的定義可得出∠ABC=90°,再根據(jù)勾股定理可求得AC的長為14.1.(2)由(1)可知△ABC為等腰直角三角形,從而得出∠BAC=45°,求出∠CAM=15°,所而確定C港在A港的什么方向.【詳解】(1)由題意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==≈14.1.答:A、C兩地之間的距離為14.1km.(2)由(1)知,△ABC為等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏東15°的方向上.【考點】本題考查了方位角的概念及勾股定理及其逆定理,正確理解方位角是解題的關(guān)鍵.2、證明見解析【解析】【分析】連接AC,根據(jù)四邊形ABCD面積的兩種不同表示形式,結(jié)合全等三角形的性質(zhì)即可求解.【詳解】解:連接AC,∵△ABE≌△BCD,∴AB=BC,AE=BD,BE=CD,∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴S四邊形ABCD=,又∵S四邊形ABCD=,,∴AB2=AE2+BD?BE-BE?DE,∴AB2=AE2+(BD-DE)?BE,即AB2=BE2+AE2.【考點】本題考查了勾股定理的證明,解題時,利用了全等三角形的對應邊相等,對應角相等的性質(zhì).3、(1)見解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理證明即可.(2)利用勾股數(shù)的公式代入求值即可.(1)證明:,∴,,構(gòu)成勾股數(shù).(2)根據(jù)最小數(shù)為奇數(shù)時,另兩個正整數(shù)為,,當a=9時,,,故答案為:40,41.【考點】本題考查了勾股定理逆定理,勾股數(shù)的探索,代入求值,熟練掌握勾股數(shù)是解題的關(guān)鍵.4、(1)見解析(2)6【解析】【分析】(1)根據(jù)已知條件利用證明即可;(2)根據(jù)勾股
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽省省級示范高中2026屆高三語文第一學期期末統(tǒng)考模擬試題含解析
- 暢想未來科幻作文(15篇)
- 業(yè)務談判框架參考提升談判能力
- 2025年高效太陽能產(chǎn)業(yè)鏈項目可行性研究報告
- 旱地作業(yè)合同范本
- 野生生物保護職責承諾函3篇范文
- 培訓增補合同范本
- 基礎(chǔ)防水合同協(xié)議
- 墻體粉白合同范本
- 就業(yè)相關(guān)協(xié)議書
- 頸椎病的手術(shù)治療方法
- 野性的呼喚讀書分享
- 極簡化改造實施規(guī)范
- 科研方法論智慧樹知到期末考試答案章節(jié)答案2024年南開大學
- DBJ51-T 139-2020 四川省玻璃幕墻工程技術(shù)標準
- 一帶一路教學課件教學講義
- 工廠蟲害控制分析總結(jié)報告
- 回顧性中醫(yī)醫(yī)術(shù)實踐資料(醫(yī)案)表
- 延期交房起訴狀
- 廣東省消防安全重點單位消防檔案
- 高考日語形式名詞わけ、べき、はず辨析課件
評論
0/150
提交評論