難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題完整附答案詳解_第1頁(yè)
難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題完整附答案詳解_第2頁(yè)
難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題完整附答案詳解_第3頁(yè)
難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題完整附答案詳解_第4頁(yè)
難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題完整附答案詳解_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、已知學(xué)校航模組設(shè)計(jì)制作的火箭升空高度h(m)與飛行時(shí)間t(s)滿足函數(shù)表達(dá)式h=﹣t2+24t+1,則下列說(shuō)法中正確的是(

)A.點(diǎn)火后1s和點(diǎn)火后3s的升空高度相同B.點(diǎn)火后24s火箭落于地面C.火箭升空的最大高度為145mD.點(diǎn)火后10s的升空高度為139m2、已知點(diǎn)在半徑為8的外,則(

)A. B. C. D.3、在平面直角坐標(biāo)系中,將二次函數(shù)的圖像向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,所得拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為(

)A. B. C. D.4、如圖所示,雙曲線y=上有一動(dòng)點(diǎn)A,連接OA,以O(shè)為頂點(diǎn)、OA為直角邊,構(gòu)造等腰直角三角形OAB,則△OAB面積的最小值為(

)A. B. C.2 D.25、二次函數(shù)y=x2+px+q,當(dāng)0≤x≤1時(shí),此函數(shù)最大值與最小值的差(

)A.與p、q的值都有關(guān) B.與p無(wú)關(guān),但與q有關(guān)C.與p、q的值都無(wú)關(guān) D.與p有關(guān),但與q無(wú)關(guān)6、如圖,在△ABC中,點(diǎn)G為△ABC的重心,過(guò)點(diǎn)G作DE∥BC,分別交AB、AC于點(diǎn)D、E,則△ADE與四邊形DBCE的面積比為()A. B. C. D.二、多選題(7小題,每小題2分,共計(jì)14分)1、下表中列出的是一個(gè)二次函數(shù)的自變量與函數(shù)的幾組對(duì)應(yīng)值:…013……6…下列各選項(xiàng)中,正確的是(

)A.函數(shù)圖象的開口向下 B.當(dāng)時(shí),的值隨的增大而增大C.函數(shù)的圖象與軸無(wú)交點(diǎn) D.這個(gè)函數(shù)的最小值小于2、已知:線段a、b,且,則下列說(shuō)法正確的是(

)A.a(chǎn)=2cm,b=3cm B.a(chǎn)=2k,b=3k(k≠0)C.3a=2b D.3、下表時(shí)二次函數(shù)y=ax2+bx+c的x,y的部分對(duì)應(yīng)值:…………則對(duì)于該函數(shù)的性質(zhì)的判斷中正確的是()A.該二次函數(shù)有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個(gè)實(shí)數(shù)根分別位于﹣<x<0和2<x<之間D.當(dāng)x>0時(shí),函數(shù)值y隨x的增大而增大4、在△ABC中,∠C=90°,下列各式一定成立的是(

)A.a(chǎn)=b?cosA B.a(chǎn)=c?cosB C.c= D.a(chǎn)=b?tanA5、如圖,在四邊形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,點(diǎn)P是邊BC上的動(dòng)點(diǎn),若△ABP與△CDP相似,則BP=(

)A.3.6B.C.D.2.46、如圖所示,AB為斜坡,D是斜坡AB上一點(diǎn),斜坡AB的坡度為i,坡角為,于點(diǎn)C,下面正確的有(

)A. B.C. D.7、如圖,□ABCD中,E是AD延長(zhǎng)線上一點(diǎn),BE交AC于點(diǎn)F,交DC于點(diǎn)G,則下列結(jié)論中正確的是()A.△ABE∽△DGE B.△CGB∽△DGEC.△BCF∽△EAF D.△ACD∽△GCF第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、某圓的周長(zhǎng)是12.56米,那么它的半徑是______________,面積是__________.2、如圖,拋物線與直線交于A(-1,P),B(3,q)兩點(diǎn),則不等式的解集是_____.3、如圖所示,在△ABC中,,,.(1)如圖1,四邊形為的內(nèi)接正方形,則正方形的邊長(zhǎng)為_________;(2)如圖2,若△ABC內(nèi)有并排的n個(gè)全等的正方形,它們組成的矩形內(nèi)接于,則正方形的邊長(zhǎng)為_________.4、cos45°-tan60°=________;5、《九章算術(shù)》是中國(guó)古代的數(shù)學(xué)專著,是“算經(jīng)十書”(漢唐之間出現(xiàn)的十部古算書)中最重要的一種.中有下列問(wèn)題:“今有邑方不知大小,各中開門.出北門八十步有木,出西門二百四十五步見木.問(wèn)邑方有幾何?”意思是:如圖,點(diǎn)M、點(diǎn)N分別是正方形ABCD的邊AD、AB的中點(diǎn),,,EF過(guò)點(diǎn)A,且步,步,已知每步約40厘米,則正方形的邊長(zhǎng)約為__________米.6、二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點(diǎn)的坐標(biāo)(x,y)對(duì)應(yīng)值列表如下:x…-3-2-101…y…-4-3-4-7-12…則該圖象的對(duì)稱軸是___________7、如圖,在△ABC中,∠B=45°,tanC=,AB=,則AC=_____.四、解答題(6小題,每小題10分,共計(jì)60分)1、(1)方法導(dǎo)引:?jiǎn)栴}:如圖1,等邊三角形的邊長(zhǎng)為6,點(diǎn)是和的角平分線交點(diǎn),,繞點(diǎn)任意旋轉(zhuǎn),分別交的兩邊于,兩點(diǎn).求四邊形面積.討論:①小明:在旋轉(zhuǎn)過(guò)程中,當(dāng)經(jīng)過(guò)點(diǎn)時(shí),一定經(jīng)過(guò)點(diǎn).②小穎:小明的分析有道理,這樣我們就可以利用“”證出.③小飛:因?yàn)椋灾灰愠龅拿娣e就得出了四邊形的面積.老師:同學(xué)們的思路很清晰,也很正確.在分析和解決問(wèn)題時(shí),我們經(jīng)常會(huì)借用特例作輔助線來(lái)解決一般問(wèn)題:請(qǐng)你按照討論的思路,直接寫出四邊形的面積:________.(2)應(yīng)用方法:①特例:如圖2,的頂點(diǎn)在等邊三角形的邊上,,,邊于點(diǎn),于點(diǎn),求的面積.②探究:如圖3,已知,頂點(diǎn)在等邊三角形的邊上,,,記的面積為,的面積為,求的值.③應(yīng)用:如圖4,已知,頂點(diǎn)在等邊三角形的邊的延長(zhǎng)線上,,,記的面積為,的面積為,請(qǐng)直接寫出與的關(guān)系式.

2、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點(diǎn)A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)分別為x1,x2,當(dāng)x12+x22=10時(shí),求k的值;(3)當(dāng)﹣4<x≤m時(shí),y有最大值,求m的值.3、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點(diǎn)A,過(guò)A點(diǎn)作x軸的垂線,垂足為B,當(dāng)△OAB的面積為4時(shí),求m的值.4、如圖,矩形在平面直角坐標(biāo)系中,交軸于點(diǎn),動(dòng)點(diǎn)從原點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿軸正方向移動(dòng),移動(dòng)時(shí)間為秒,過(guò)點(diǎn)P作垂直于軸的直線,交于點(diǎn)M,交或于點(diǎn)N,直線掃過(guò)矩形的面積為.(1)求點(diǎn)的坐標(biāo);(2)求直線移動(dòng)過(guò)程中到點(diǎn)之前的關(guān)于的函數(shù)關(guān)系式;(3)在直線移動(dòng)過(guò)程中,第一象限的直線上是否存在一點(diǎn),使是等腰直角三角形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由5、已知,且,求x,y的值.6、計(jì)算:(1)(2)-參考答案-一、單選題1、C【解析】【分析】分別求出t=1、3、24、10時(shí)h的值可判斷A、B、D三個(gè)選項(xiàng),將解析式配方成頂點(diǎn)式可判斷C選項(xiàng).【詳解】解:A、當(dāng)t=1時(shí),h=24;當(dāng)t=3時(shí),h=64;所以點(diǎn)火后1s和點(diǎn)火后3s的升空高度不相同,此選項(xiàng)錯(cuò)誤;B、當(dāng)t=24時(shí),h=1≠0,所以點(diǎn)火后24s火箭離地面的高度為1m,此選項(xiàng)錯(cuò)誤;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度為145m,此選項(xiàng)正確;D、當(dāng)t=10時(shí),h=141m,此選項(xiàng)錯(cuò)誤;故選:C.【考點(diǎn)】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì).2、A【解析】【分析】根據(jù)點(diǎn)P與⊙O的位置關(guān)系即可確定OP的范圍.【詳解】解:∵點(diǎn)P在圓O的外部,∴點(diǎn)P到圓心O的距離大于8,故選:A.【考點(diǎn)】本題主要考查點(diǎn)與圓的位置關(guān)系,關(guān)鍵是要牢記判斷點(diǎn)與圓的位置關(guān)系的方法.3、B【解析】【分析】先求出平移后拋物線的頂點(diǎn)坐標(biāo),進(jìn)而即可得到答案.【詳解】解:∵的頂點(diǎn)坐標(biāo)為(0,0)∴將二次函數(shù)的圖像向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,所得拋物線的頂點(diǎn)坐標(biāo)為(-2,1),∴所得拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為,故選B【考點(diǎn)】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點(diǎn)坐標(biāo)或掌握“左加右減,上加下減”,是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)等腰直角三角形性質(zhì)得出S△OAB=OA?OB=OA2,先求得OA取最小值時(shí)A的坐標(biāo),即可求得OA的長(zhǎng),從而求得△OAB面積的最小值.【詳解】解:∵△AOB是等腰直角三角形,∴OA=OB,∴S△OAB=OA?OB=OA2,∴OA取最小值時(shí),△OAB面積的值最小,∵當(dāng)直線OA為y=x時(shí),OA最小,解得或,∴此時(shí)A的坐標(biāo)為(,),∴OA=2,∴,∴△OAB面積的最小值為2,故選:C.【考點(diǎn)】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,等腰直角三角形的性質(zhì),三角形的面積,求得OA取最小值時(shí)A的坐標(biāo)是解題的關(guān)鍵.5、D【解析】【分析】分別求出函數(shù)解析式的最小值、當(dāng)0≤x≤1時(shí)端點(diǎn)值即:當(dāng)x=0和x=1時(shí)的函數(shù)值.由二次函數(shù)性質(zhì)可知此函數(shù)最大值與最小值必是其中的兩個(gè),通過(guò)比較可知差值與p有關(guān),但與q無(wú)關(guān)【詳解】解:依題意得:當(dāng)時(shí),端點(diǎn)值,當(dāng)時(shí),端點(diǎn)值,當(dāng)時(shí),函數(shù)最小值,由二次函數(shù)的最值性質(zhì)可知,當(dāng)0≤x≤1時(shí),此函數(shù)最大值和最小值是、、其中的兩個(gè),所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關(guān),但與q無(wú)關(guān)故選:.【考點(diǎn)】本題考查了二次函數(shù)的最值問(wèn)題,掌握二次函數(shù)的性質(zhì)、靈活運(yùn)用配方法是解題的關(guān)鍵.6、A【解析】【分析】連接AG并延長(zhǎng)交BC于H,如圖,利用三角形重心的性質(zhì)得到AG=2GH,再證明△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)得到==,然后根據(jù)比例的性質(zhì)得到△ADE與四邊形DBCE的面積比.【詳解】解:連接AG并延長(zhǎng)交BC于H,如圖,∵點(diǎn)G為△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE與四邊形DBCE的面積比=.故選:A.【考點(diǎn)】本題考查了三角形的重心與相似三角形的性質(zhì)與判定.重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2∶1.二、多選題1、BD【解析】【分析】根據(jù)拋物線經(jīng)過(guò)點(diǎn)(0,-4),(3,-4)可得拋物線對(duì)稱軸為直線,由拋物線經(jīng)過(guò)點(diǎn)(-2,6)可得拋物線開口向上,進(jìn)而求解.【詳解】解:∵拋物線經(jīng)過(guò)點(diǎn)(0,-4),(3,-4),∴拋物線對(duì)稱軸為直線,∵拋物線經(jīng)過(guò)點(diǎn)(-2,6),∴當(dāng)x<時(shí),y隨x增大而減小,∴拋物線開口向上,且跟x軸有交點(diǎn),故A,C錯(cuò)誤,不符合題意;∴x>時(shí),y隨x增大而增大,故B正確,符合題意;由對(duì)稱性可知,在處取得最小值,且最小值小于-6.故D正確,符合題意.故選:BD.【考點(diǎn)】本題考查二次函數(shù)的圖象與性質(zhì),解題關(guān)鍵是掌握二次函數(shù)與方程的關(guān)系.2、BCD【解析】【分析】根據(jù)比例的定義和性質(zhì),對(duì)選項(xiàng)一一分析,即可選出正確答案.【詳解】解:A、兩條線段的比,沒有長(zhǎng)度單位,它與所采用的長(zhǎng)度單位無(wú)關(guān),故選項(xiàng)錯(cuò)誤,不符合題意;B、,根據(jù)等比性質(zhì),a=2k,b=3k(k>0),故選項(xiàng)正確,符合題意;C、?3a=2b,故選項(xiàng)正確,符合題意;D、?a=b,故選項(xiàng)正確,符合題意.故選:BCD.【考點(diǎn)】本題考查了比例的性質(zhì).在比例里,兩個(gè)外項(xiàng)的乘積等于兩個(gè)內(nèi)項(xiàng)的乘積.注意兩條線段的比,沒有長(zhǎng)度單位,它與所采用的長(zhǎng)度單位無(wú)關(guān).3、BC【解析】【分析】由圖表可得二次函數(shù)y=ax2+bx+c的對(duì)稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當(dāng)x=0時(shí),y=-1;當(dāng)x=2時(shí),y=-1;當(dāng)x=,y=;當(dāng)x=,y=;∴二次函數(shù)y=ax2+bx+c的對(duì)稱軸為直線x=1,x>1時(shí),y隨x的增大而增大,x<1時(shí),y隨x的增大而減?。郺>0即二次函數(shù)有最小值則A,D錯(cuò)誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個(gè)實(shí)數(shù)根分別位于-<x<0和2<x<之間;所以選項(xiàng)B,C正確,故選:BC.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn),二次函數(shù)的性質(zhì),二次函數(shù)的最值,理解圖表中信息是本題的關(guān)鍵.4、BCD【解析】【分析】作出圖形,然后根據(jù)三角函數(shù)的定義對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:如圖,A、a=b?tanA,故選項(xiàng)A錯(cuò)誤,不符合題意;B、a=c?cosB正確,故關(guān)系式一定成立;C、c=正確,故關(guān)系式一定成立;D、a=b?tanA正確,故關(guān)系式一定成立;故選BCD.【考點(diǎn)】本題考查銳角三角函數(shù)的定義及運(yùn)用:在直角三角形中,銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊.5、ABC【解析】【分析】根據(jù)相似求出相似比,根據(jù)相似比分類討論計(jì)算出結(jié)果即可.【詳解】解:∠B=∠C,根據(jù)題意:或,則:或,則:或,故答案為:或,故選:ABC.【考點(diǎn)】本題考查相似三角形得的性質(zhì)與應(yīng)用,能夠熟練掌握相似三角形的性質(zhì)是解決本題的關(guān)鍵.6、BCD【解析】【分析】根據(jù)坡度的定義解答即可.【詳解】交于點(diǎn),交于點(diǎn),,,,,,∴BCD正確.故選:BCD.【考點(diǎn)】本題考查了解直角三角形的應(yīng)用-坡度坡角問(wèn)題,熟記坡度的定義是解題的關(guān)鍵.7、ABC【解析】【分析】本題中可利用平行四邊形ABCD中兩對(duì)邊平行的特殊條件來(lái)進(jìn)行求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠EDG=∠EAB,∵∠E=∠E,∴△ABE∽△DGE,故選項(xiàng)A正確;∵AE∥BC,∴∠EDC=∠BCG,∠E=∠CBG,∴△CGB∽△DGE,故選項(xiàng)B正確;∵AE∥BC,∴∠E=∠FBC,∠EAF=∠BCF,∴△BCF∽△EAF,故選項(xiàng)C正確;無(wú)法證得△ACD∽△GCF,故選:ABC.【考點(diǎn)】本題考查了相似三角形的判定定理,平行四邊形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.三、填空題1、

2米

12.56平方米【解析】【分析】根據(jù)周長(zhǎng)公式轉(zhuǎn)化為,將C=12.56代入進(jìn)行計(jì)算得到半徑,繼續(xù)利用面積公式,代入半徑的值求出面積的結(jié)果.【詳解】因?yàn)镃=2πr,所以==2,所以r=2(米),因?yàn)镾=πr2=3.14×22=12.56(平方米).故答案為:2米

12.56平方米.【考點(diǎn)】考查圓的面積和周長(zhǎng)與半徑之間的關(guān)系,學(xué)生必須熟練掌握?qǐng)A的面積和周長(zhǎng)的求解公式,選擇相應(yīng)的公式進(jìn)行計(jì)算,利用公式是解題的關(guān)鍵.2、或.【解析】【分析】由可變形為,即比較拋物線與直線之間關(guān)系,而直線PQ:與直線AB:關(guān)于與y軸對(duì)稱,由此可知拋物線與直線交于,兩點(diǎn),再觀察兩函數(shù)圖象的上下位置關(guān)系,即可得出結(jié)論.【詳解】解:∵拋物線與直線交于,兩點(diǎn),∴,,∴拋物線與直線交于,兩點(diǎn),觀察函數(shù)圖象可知:當(dāng)或時(shí),直線在拋物線的下方,∴不等式的解集為或.故答案為或.【考點(diǎn)】本題考查了二次函數(shù)與不等式,根據(jù)兩函數(shù)圖象的上下位置關(guān)系找出不等式的解集是解題的關(guān)鍵.3、

【解析】【分析】(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質(zhì)即可求出正方形的邊長(zhǎng);(2)設(shè)正方形的邊長(zhǎng)是x,則過(guò)點(diǎn)C作CN⊥AB,垂足為N,交GF于點(diǎn)M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點(diǎn)M,交AB于點(diǎn)N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設(shè)正方形邊長(zhǎng)為x,則,解得:,∴正方形DEFG的邊長(zhǎng)為;(2)如圖,過(guò)點(diǎn)C作CN⊥AB,垂足為N,交GF于點(diǎn)M,設(shè)小正方形的邊長(zhǎng)為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長(zhǎng)是.【考點(diǎn)】本題主要考查了正方形,矩形的性質(zhì)和相似三角形的性質(zhì).會(huì)利用三角形相似中的相似比來(lái)得到相關(guān)的線段之間的等量關(guān)系是解題的關(guān)鍵.4、【解析】【分析】根據(jù)特殊角的三角函數(shù)值進(jìn)行計(jì)算.【詳解】解:原式.故答案是:.【考點(diǎn)】本題考查特殊角的三角函數(shù)值,解題的關(guān)鍵是記住特殊角的三角函數(shù)值.5、112【解析】【分析】根據(jù)題意,可知Rt△AEN∽R(shí)t△FAN,從而可以得到對(duì)應(yīng)邊的比相等,從而可以求得正方形的邊長(zhǎng).【詳解】解:∵點(diǎn)M、點(diǎn)N分別是正方形ABCD的邊AD、AB的中點(diǎn),∴,∴AM=AN,由題意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽R(shí)t△FAN,∴,∵AM=AN,∴,解得:AM=140,∴AD=2AM=280(步),∴(米)故答案為:112.【考點(diǎn)】本題考查相似三角形的應(yīng)用、數(shù)學(xué)常識(shí)、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意.利用相似三角形的性質(zhì)和數(shù)形結(jié)合的思想解答.6、【解析】【分析】根據(jù)二次函數(shù)的圖象具有對(duì)稱性和表格中的數(shù)據(jù),可以計(jì)算出該函數(shù)圖象的對(duì)稱軸.【詳解】解:由表格可得,當(dāng)x取-3和-1時(shí),y值相等,該函數(shù)圖象的對(duì)稱軸為直線,故答案為:.【考點(diǎn)】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是明確題意,利用二次函數(shù)的對(duì)稱性解答.7、【解析】【分析】先過(guò)點(diǎn)A作AD⊥BC,垂足是點(diǎn)D,得出AD2+BD2=AB2=2,再根據(jù)∠B=45°,得出AD=BD=1,然后根據(jù)tanC=,得出=,CD=2,最后根據(jù)勾股定理即可求出AC.【詳解】過(guò)點(diǎn)A作AD⊥BC,垂足是點(diǎn)D,∵AB=,∴AD2+BD2=AB2=2,∵∠B=45°,∴∠BAD=∠B=45°,∴AD=BD,∴AD2=BD2=1,∴AD=BD=1,∵tanC=,∴=,∴CD=2,∴AC===.故答案為.【考點(diǎn)】此題考查了解直角三角形,用到的知識(shí)點(diǎn)是勾股定理、解直角三角形等,關(guān)鍵是作出輔助線,構(gòu)造直角三角形.四、解答題1、(1);(2)①的面積;②xy=12;③.【解析】【分析】(1)連接、,利用ASA證出,從而得出的面積與四邊形的面積相等,過(guò)點(diǎn)作于點(diǎn),利用銳角三角函數(shù)求出OH即可求出△OBC的面積,從而得出結(jié)論;(2)①根據(jù)等邊三角形的性質(zhì)可得,從而求出∠BOD,然后根據(jù)30°所對(duì)的直角邊是斜邊的一半和勾股定理即可求出OD和BD,從而求出結(jié)論;②過(guò)點(diǎn)作于,于,根據(jù)相似三角形判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,然后根據(jù)三角形的面積公式即可求出結(jié)論;③過(guò)點(diǎn)作交的延長(zhǎng)線于,于,根據(jù)相似三角形的判定定理可得,根據(jù)相似三角形的性質(zhì)列出比例式,變形可得,分別求出OM和ON,再結(jié)合三角形的面積公式即可求出結(jié)論.【詳解】解:(1)連接、∵是等邊三角形,∴∵是和的角平分線交點(diǎn)∴∴,∴∴∴的面積與四邊形的面積相等過(guò)點(diǎn)作于點(diǎn)∵,∴∵,∴,∴∴四邊形的面積為.故答案為:.(2)①∵是等邊三角形,∴∵于點(diǎn),∴∵,∴,,∴的面積②過(guò)點(diǎn)作于,于.由①得:,同理:∵是等邊三角形,∴∵,∴∴,∴∴,∴∴③過(guò)點(diǎn)作交的延長(zhǎng)線于,于.∵,∴∴,∵∴,∴∴∵,,∴,∴∵,,∴,∴∴【考點(diǎn)】此題考查的是全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù),掌握全等三角形的判定及性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定及性質(zhì)和銳角三角函數(shù)是解決此題的關(guān)鍵.2、(1);(2);(3)【解析】【分析】(1)把代入拋物線的解析式,解方程求解即可;(2)聯(lián)立兩個(gè)函數(shù)的解析式,消去得:再利用根與系數(shù)的關(guān)系與可得關(guān)于的方程,解方程可得答案;(3)先求解拋物線的對(duì)稱軸方程,分三種情況討論,當(dāng)<<結(jié)合函數(shù)圖象,利用函數(shù)的最大值列方程,再解方程即可得到答案.【詳解】解:(1)把代入中,拋物線的解析式為:(2)聯(lián)立一次函數(shù)與拋物線的解析式得:整理得:∵x1+x2=4-3k,x1?x2=-3,∴x12+x22=(4-3k)2+6=10,解得:∴(3)∵函數(shù)的對(duì)稱軸為直線x=2,當(dāng)m<2時(shí),當(dāng)x=m時(shí),y有最大值,=-(m-2)2+3,解得m=±,∴m=-,當(dāng)m≥2時(shí),當(dāng)x=2時(shí),y有最大值,∴=3,∴m=,綜上所述,m的值為-或.【考點(diǎn)】本題考查的是利用待定系數(shù)法求解拋物線的解析式,拋物線與軸的交點(diǎn)坐標(biāo),一元二次方程根與系數(shù)的關(guān)系,二次函數(shù)的增減性,掌握數(shù)形結(jié)合的方法與分類討論是解題的關(guān)鍵.3、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數(shù)圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個(gè)反比例函數(shù)的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點(diǎn)】此題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的圖象與性質(zhì),根據(jù)系數(shù)k的幾何意義得出(m?5)=4是解題的關(guān)鍵.4、(1);(2);(3)存在.【解析】【分析】(1)由,且AB=6即可求出AO的長(zhǎng),再由勾股定理即可求出BO的長(zhǎng),即可求出A和B點(diǎn)坐標(biāo).(2)P點(diǎn)從原點(diǎn)出發(fā),在到達(dá)終點(diǎn)前,直線l掃過(guò)的面積始終為平行四邊形BMNE,故求該平行四邊的底BE和高OP,相乘即得到面積S;由,且AB=6,可求出AC=10,過(guò)D點(diǎn)作DF⊥x軸,易證,求出CF=AO,進(jìn)而求出OF的長(zhǎng);由,故,求出OE的長(zhǎng),進(jìn)而求出OB+OE=BE.(3)分類討論,當(dāng)B為直角頂角時(shí),過(guò)Q1點(diǎn)作Q

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論