版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點D,E是AD上的一個動點,連接EC,將線段EC繞點C按逆時針方向旋轉60°得到FC,連接DF,則在點E的運動過程中,DF的最小值是()A.1 B.1.5 C.2 D.42、在ABCD中,添加以下哪個條件能判斷其為菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD3、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:24、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點,連接MN、MP、NP,則結論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當∠ABC=60°時,MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④5、如圖,把一張長方形紙片ABCD沿對角線AC折疊,點B的對應點為點B′,AB′與DC相交于點E,則下列結論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在?ABCD中,BC=3,CD=4,點E是CD邊上的中點,將△BCE沿BE翻折得△BGE,連接AE,A、G、E在同一直線上,則AG=______,點G到AB的距離為______.2、如圖,在矩形ABCD中,對角線AC,BD相交于O,EF過點O分別交AB,CD于E,F(xiàn),已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_____cm2.3、點D、E分別是△ABC邊AB、AC的中點,已知BC=12,則DE=_____4、正方形的對角線長為cm,則它的周長為__________cm.5、如圖,在矩形中,,,點是線段上的一點(不與點,重合),將△沿折疊,使得點落在處,當△為等腰三角形時,的長為___________.三、解答題(5小題,每小題10分,共計50分)1、如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,過點A作射線l∥BC,若點P從點A出發(fā),以每秒2cm的速度沿射線l運動,設運動時間為t秒(t>0),作∠PCB的平分線交射線l于點D,記點D關于射線CP的對稱點是點E,連接AE、PE、BP.(1)求證:PC=PD;(2)當△PBC是等腰三角形時,求t的值;(3)是否存在點P,使得△PAE是直角三角形,如果存在,請直接寫出t的值,如果不存在,請說明理由.2、如圖,四邊形ABCD為平行四邊形,∠BAD的平分線AF交CD于點E,交BC的延長線于點F.點E恰是CD的中點.求證:(1)△ADE≌△FCE;(2)BE⊥AF.3、如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.(1)求證:AE=CF;(2)若∠ABE=62°,求∠GFC+∠BCF的值.4、如圖,正方形ABCD中,點E在BC的延長線上,AE分別交DC,BD于F,G,點H為EF的中點.求證:(1)∠DAG=∠DCG;(2)GC⊥CH.5、如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E,CD=5,DB=13,求BE的長.
-參考答案-一、單選題1、C【解析】【分析】取線段AC的中點G,連接EG,根據(jù)等邊三角形的性質以及角的計算即可得出CD=CG以及∠FCD=∠ECG,由旋轉的性質可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進而即可得出DF=GE,再根據(jù)點G為AC的中點,即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當EG∥BC時,EG最小,∵點G為AC的中點,∴此時EG=DF=CD=BC=2.故選:C.【點睛】本題考查了等邊三角形的性質以及全等三角形的判定與性質,三角形中位線的性質,解題的關鍵是通過全等三角形的性質找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)全等三角形的性質找出相等的邊是關鍵.2、D【解析】【分析】根據(jù)對角線互相垂直的平行四邊形是菱形,結合選項找到對角線互相垂直即可求解.【詳解】A、∵AB⊥BC,∴∠ABC=90°,又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形;故選項A不符合題意;B、C選項,同A選項一樣,均為鄰邊垂直,ABCD是矩形;故選項B、C不符合題意;D、∵四邊形ABCD是平行四邊形,又∵AC⊥BD,∴四邊形ABCD是菱形;故選項D符合題意故選D【點睛】本題考查了菱形的判定,掌握菱形的判定定理是解題的關鍵.3、D【解析】【分析】兩組對角分別相等的四邊形是平行四邊形,所以∠A和∠C是對角,∠B和∠D是對角,對角的份數(shù)應相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點睛】本題考查了平行四邊形的判定,在應用判定定理判定平行四邊形時,應仔細觀察題目所給的條件,仔細選擇適合于題目的判定方法進行解答,避免混用判定方法.4、C【解析】【分析】利用直角三角形斜邊上的中線的性質即可判定①正確;利用含30度角的直角三角形的性質即可判定②正確,由勾股定理即可判定③錯誤;由等邊三角形的判定及性質、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點P是BC的中點∴PM、PN分別是兩個直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯誤當∠ABC=60゜時,△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結論有①②④故選:C【點睛】本題考查了直角三角形斜邊上中線的性質,含30度角的直角三角形的性質,等邊三角形的判定及性質,勾股定理,三角形中位線定理等知識,掌握這些知識并正確運用是解題的關鍵.5、D【解析】【分析】根據(jù)翻折變換的性質可得∠BAC=∠CAB′,根據(jù)兩直線平行,內錯角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對角線AC折疊,點B的對應點為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結論正確的是D選項.故選D.【點睛】本題考查了翻折變換的性質,平行線的性質,矩形的對邊互相平行,等角對等邊的性質,熟記各性質并準確識圖是解題的關鍵.二、填空題1、2##【解析】【分析】根據(jù)折疊性質和平行四邊形的性質可以證明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的長,進而可得GF的值.【詳解】解:如圖,GF⊥AB于點F,∵點E是CD邊上的中點,∴CE=DE=2,由折疊可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在?ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于點F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根據(jù)勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,∴GF2=AG2-AF2=4-=,∴GF=,故答案為2,.【點睛】本題考查了折疊的性質、平行四邊形的性質、勾股定理等知識,證明△ABG≌△EAD是解題的關鍵.2、10【解析】【分析】利用矩形性質,求證,將陰影部分的面積轉為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點睛】本題主要是考查了矩形的性質以全等三角形的判定與性質以及中線平分三角形面積,熟練利用矩形性質,證明三角形全等,將陰影部分面積轉化為其他圖形的面積,這是解決本題的關鍵.3、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進行計算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關鍵.4、16【解析】【分析】根據(jù)正方形對角線的長,可將正方形的邊長求出,進而可將正方形的周長求出.【詳解】解:設正方形的邊長為x,∵正方形的對角線長為cm,∴,解得:x=4,∴正方形的邊長為:4(cm),∴正方形的周長為4×4=16(cm).故答案為:16.【點睛】本題考查了正方形的性質,勾股定理,解決本題的關鍵是掌握正方形的性質.5、或【解析】【分析】根據(jù)題意分,,三種情況討論,構造直角三角形,利用勾股定理解決問題.【詳解】解:∵四邊形是矩形∴,∵將△沿折疊,使得點落在處,∴,,設,則①當時,如圖過點作,則四邊形為矩形,在中在中即解得②當時,如圖,設交于點,設垂直平分在中即在中,即聯(lián)立,解得③當時,如圖,又垂直平分垂直平分此時重合,不符合題意綜上所述,或故答案為:或【點睛】本題考查了矩形的性質,勾股定理,等腰三角形的性質與判定,垂直平分線的性質,分類討論是解題的關鍵.三、解答題1、(1)見解析;(2)t=1或或;(3)存在,△PAE是直角三角形時t=或【分析】(1)根據(jù)平行線的性質可得∠PDC=∠∠BCD,根據(jù)角平分線的定義可得∠PCD=∠BCD,則∠PCD=∠PDC,即可得到PC=PD;(2)分當BP=BC=4cm時,當PC=BC=4cm時,當PC=PB時三種情況討論求解即可;(3)分當∠PAE=90°時,當∠APE=90°時,當∠AEP=90°時,三種情況討論求解即可.【詳解】解:(1)∵l∥BC,∴∠PDC=∠∠BCD,∵CD平分∠BCP,∴∠PCD=∠BCD,∴∠PCD=∠PDC,∴PC=PD;(2)在△ABC中,∠ACB=90°,,,∴,
若△PBC是等腰三角形,存在以下三種情況:①當BP=BC=4cm時,作PH⊥BC于H,∵∠ACB=90°,l∥BC,∴∠ACH=∠CAP=90°,∴四邊形ACHP是矩形,∴PH=AC=3cm,由勾股定理∴,∴,即,解得,②當PC=BC=4cm時,由勾股定理,即,解得;③當PC=PB時,P在BC的垂直平分線上,∴CH=BC=2cm,∴同理可得AP=CH=2cm,即2t=2,解得t=1,綜上所述,當t=1或或時,△PBC是等腰三角形;(3)∵D關于射線CP的對稱點是點E,∴PD=PE,∠ECP=∠DCP,由(1)知,PD=PC,∴PC=PE,要使△PAE是直角三角形,則存在以下三種情況:①當∠PAE=90°時,此時點C、A、E在一條直線上,且AE=AC=3cm,∵CD平分∠BCP,∴∠ECP=∠DCP=∠BCD,∴∠ACP=∠ACB=30°,∴,∵,即,∴即2t=,解得;②當∠APE=90°時,∴∠EPD=90°∵D、E關于直線CP對稱,∴∠EPF=∠DPF=45°,∴∠APC=∠DPF=45°,∵l∥BC,∴∠CAP=180°-∠ACB=90°,∴∠ACP=45°,∴AP=AC=3cm,∴,∴;③當∠AEP=90°時,在Rt△ACP中,PC>AP,在Rt△AEP中,AP>PE,∵PC=PE=PD,故此情況不存在,綜上,△PAE是直角三角形時或.【點睛】本題主要考查了軸對稱的性質,角平分線的定義,平行線的性質,等腰三角形的性質,勾股定理,矩形的性質與判定,含30度角的直角三角形的性質,勾股定理等等,解題的關鍵在于能夠利用分類討論的思想求解.2、(1)見解析;(2)見解析.【分析】(1)由平行四邊形的性質得出AD∥BC,得出∠D=∠ECF,則可證明△ADE≌△FCE(ASA);(2)由平行四邊形的性質證出AB=BF,由全等三角形的性質得出AE=FE,由等腰三角形的性質可得出結論.【詳解】證明:(1)∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠D=∠ECF,∵E為CD的中點,∴ED=EC,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA);(2)∵四邊形ABCD為平行四邊形,∴AB=CD,AD∥BC,∴∠FAD=∠AFB,又∵AF平分∠BAD,∴∠FAD=∠FAB.∴∠AFB=∠FAB.∴AB=BF,∵△ADE≌△FCE,∴AE=FE,∴BE⊥AF.【點睛】本題主要考查了平行四邊形的性質,全等三角形的性質與判定,角平分線的定義,等腰三角形的性質與判定,熟知相關知識是解題的關鍵.3、(1)證明見解析;(2)73°.【分析】(1)根據(jù)正方形的性質及各角之間的關系可得:,由全等三角形的判定定理可得,再根據(jù)其性質即可得證;(2)根據(jù)垂直及等腰三角形的性質可得,再由三角形的外角的性質可得,由此計算即可.【詳解】(1)證明:∵四邊形ABCD是正方形,∴,,∵,∴,∵°,,∴,在和中,,∴,∴;(2)解:∵BE⊥BF,∴,又∵,∴,∵四邊形ABCD是正方形,∴,∵,∴,∴.∴的值為.【點睛】題目主要考查全等三角形的判定和性質,正方形的性質,三角形的外角性質,理解題意,熟練運用各個定理性質是解題關鍵.4、(1)見解析;(2)見解析【分析】(1)要證明,需把兩角放到兩三角形中,證明兩三角形與全等得到,全等的方法是:由為正方形,得到與相等,與相等,再加上公共邊,利用“”得到全等,利用全等三角形的對應角相等得證;(2)要證明與垂直,需證,即,方法是:由正方形的對邊與平行,根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院老人財務管理制度
- 2025-2030農業(yè)科技行業(yè)市場現(xiàn)狀發(fā)展趨勢供需分析及投資方向規(guī)劃分析研究報告
- 2025-2030農業(yè)物聯(lián)網(wǎng)技術監(jiān)測作物病蟲害防預體系創(chuàng)新
- 2025-2030農業(yè)-種植業(yè)市場深度調研及提高農產品質量趨勢分析報告
- 北宋中央制度
- 愛護家園教案(2025-2026學年)
- 高考歷史一輪復習-第9單元-資本主義世界市場的形成和發(fā)展-第19講-歐美的工業(yè)革命講義-北師大版
- 游樂園安全培訓制度課件
- 小學英語口語教學創(chuàng)新方案
- 《Mathematica科學計算與程序設計》-引子
- 中國工藝美術館招聘筆試試卷2021
- DB32T 3695-2019房屋面積測算技術規(guī)程
- GB/T 7044-2013色素炭黑
- GB 8270-2014食品安全國家標準食品添加劑甜菊糖苷
- 易制毒化學品日常管理有關問題權威解釋和答疑
- T∕CCCMHPIE 1.44-2018 植物提取物 淫羊藿提取物
- 湖北省高等教育自學考試
- (完整word版)Word信紙(A4橫條直接打印版)模板
- 中心衛(wèi)生院關于成立按病種分值付費(DIP)工作領導小組及制度的通知
- 測試算例-各向同性湍流DNS
- 五年級上冊數(shù)學課件 口算與應用題專項 人教版(共64張PPT)
評論
0/150
提交評論