難點解析重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測評試卷(含答案詳解版)_第1頁
難點解析重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測評試卷(含答案詳解版)_第2頁
難點解析重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測評試卷(含答案詳解版)_第3頁
難點解析重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測評試卷(含答案詳解版)_第4頁
難點解析重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測評試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩28頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,一扇窗戶打開后,用窗鉤AB可將其固定()A.三角形的穩(wěn)定性B.兩點之間線段最短C.四邊形的不穩(wěn)定性D.三角形兩邊之和大于第三邊2、如圖,E為線段BC上一點,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,則BE的長度為()A.12 B.10 C.8 D.63、如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結(jié)論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個數(shù)是()A.1 B.2 C.3 D.44、一個三角形的兩邊長分別是3和7,且第三邊長為整數(shù),這樣的三角形周長最大的值為()A. B. C. D.5、如圖,點O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,則OC的長為()A.3 B.4 C.5 D.66、如圖,在和中,已知,在不添加任何輔助線的前提下,要使,只需再添加的一個條件不可以是()A. B. C. D.7、尺規(guī)作圖:作角等于已知角.示意圖如圖所示,則說明的依據(jù)是()A.SSS B.SAS C.ASA D.AAS8、已知的三邊長分別為a,b,c,則a,b,c的值可能分別是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,109、如圖是5×5的正方形網(wǎng)格中,以D,E為頂點作位置不同的格點的三角形與△ABC全等,這樣格點三角形最多可以畫出()A.2個 B.3個 C.4個 D.5個10、在下列長度的四根木棒中,能與3cm,9cm的兩根木棒首尾順次相接釘成一個三角形的是()A.3cm B.6cm C.10cm D.12cm第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、已知,如圖,AB=AC,AD=AE,BE與CD相交于點P,則下列結(jié)論:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4對全等三角形;正確的是_____(請?zhí)顚懶蛱枺?、在平面直角坐標系中,點B(0,4),點A為x軸上一動點,連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時針方向排列,且∠BAE為直角),連接OE.當OE最小時,點E的縱坐標為______.3、如圖,在ABC中,已知點D,E,F(xiàn)分別為邊BC,AD,CE的中點,且ABC的面積等于24cm2,則陰影部分圖形面積等于_____cm24、如圖,,,,則、兩點之間的距離為______.5、如圖,中,已知點D、E、F分別為BC、AD、CE的中點,設(shè)的面積為,的面積為,則______.6、如圖,∠AOB=90°,OA=OB,直線l經(jīng)過點O,分別過A、B兩點作AC⊥l于點C,BD⊥l于點D,若AC=5,BD=3,則CD=_______.7、已知a,b,c是的三條邊長,化簡的結(jié)果為_______.8、如圖,AE與BD相交于點C,AC=EC,BC=DC,AB=5cm,點P從點A出發(fā),沿A→B方向以2cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當點P到達點B時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t(s).(1)AP的長為___cm.(用含t的代數(shù)式表示)(2)連接PQ,當線段PQ經(jīng)過點C時,t=___s.9、如圖,ABDC,ADBC,AC與BD交于點O,EF經(jīng)過點O,與AD、BC分別交于點E和F,則圖中共有___對全等三角形.10、如圖,△ABC是一個等腰直角三角形,∠BAC=90°,BC分別與AF、AG相交于點D、E.不添加輔助線,使△ACE與△ABD全等,你所添加的條件是____.(填一個即可)三、解答題(6小題,每小題10分,共計60分)1、用無刻度的直尺作圖,保留作圖痕跡.(1)在圖1中,BD是△ABC的角平分線,作△ABC的平分內(nèi)角∠BCA的角平分線;(2)在圖2中,AD是∠BAC的角平分線,作△ABC的∠BCA相鄰的外角的角平分線.2、已知的三邊長分別為a,b,c.若a,b,c滿足,試判斷的形狀.3、平行線是平面幾何中最基本、也是非常重要的圖形.在解決某些幾何問題時,若能根據(jù)問題的需要,添加適當?shù)钠叫芯€,往往能使證明順暢、簡潔.請根據(jù)上述思想解決問題:(1)如圖(1),ABCD,試判斷∠B,∠D與∠E的關(guān)系;(2)如圖(2),已知ABCD,在∠ACD的角平分線上取兩個點M、N,使得∠AMN=∠ANM,求證:∠CAM=∠BAN.4、在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)當直線MN繞點C旋轉(zhuǎn)到圖①的位置時,易證△ADC≌△CEB(不需要證明),進而得到DE、AD、BE之間的數(shù)量關(guān)系為.(探究)(2)當直線MN繞點C旋轉(zhuǎn)到圖②的位置時,求證:DE=AD-BE.(3)當直線MN繞點C旋轉(zhuǎn)到圖③的位置時,直接寫出DE、AD、BE之間的數(shù)量關(guān)系.5、如圖,在長方形ABCD中,AD=3,DC=5,動點M從A點出發(fā)沿線段AD—DC以每秒1個單位長度的速度向終點C運動;動點N同時從C點出發(fā)沿線段CD—DA以每秒3個單位長度的速度向終點A運動.ME⊥PQ于點E,NF⊥PQ于點F,設(shè)運動的時間為秒.(1)在運動過程中當M、N兩點相遇時,求t的值.(2)在整個運動過程中,求DM的長.(用含t的代數(shù)式表示)(3)當DEM與DFN全等時,請直接寫出所有滿足條件的DN的長.6、已知,如圖,三角形ABC是等腰直角三角形,∠ACB=90°,F(xiàn)是AB的中點,直線l經(jīng)過點C,分別過點A、B作l的垂線,即AD⊥CE,BE⊥CE,(1)如圖1,當CE位于點F的右側(cè)時,求證:△ADC≌△CEB;(2)如圖2,當CE位于點F的左側(cè)時,求證:ED=BE﹣AD;(3)如圖3,當CE在△ABC的外部時,試猜想ED、AD、BE之間的數(shù)量關(guān)系,并證明你的猜想.-參考答案-一、單選題1、A【分析】由三角形的穩(wěn)定性即可得出答案.【詳解】一扇窗戶打開后,用窗鉤AB可將其固定,故選:A.【點睛】本題考查了三角形的穩(wěn)定性,加上窗鉤AB構(gòu)成了△AOB,而三角形具有穩(wěn)定性是解題的關(guān)鍵.2、A【分析】利用角相等和邊相等證明,利用全等三角形的性質(zhì)以及邊的關(guān)系,即可求出BE的長度.【詳解】解:由題意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故選:A.【點睛】本題主要是考查了全等三角形的判定和性質(zhì),熟練通過已知條件證明三角形全等,利用全等性質(zhì)及邊的關(guān)系,來求解未知邊的長度,這是解決本題的主要思路.3、D【分析】首先證明△ABE≌△BCF,再利用角的關(guān)系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對折,得到△BPF,利用角的關(guān)系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點睛】本題主要是考查了三角形全等、正方形的性質(zhì),熟練地綜合應(yīng)用全等三角形以及正方形的性質(zhì),證明邊相等和角相等,是解決本題的關(guān)鍵.4、C【分析】先根據(jù)三角形的三邊關(guān)系定理求得第三邊的取值范圍;再根據(jù)第三邊是整數(shù),從而求得周長最大時,對應(yīng)的第三邊的長.【詳解】解:設(shè)第三邊為a,根據(jù)三角形的三邊關(guān)系,得:7-3<a<3+7,即4<a<10,∵a為整數(shù),∴a的最大值為9,則三角形的最大周長為9+3+7=19.故選:C.【點睛】本題考查了三角形的三邊關(guān)系:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.5、C【分析】證明△AOB≌△COD推出OB=OD,OA=OC,即可解決問題.【詳解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故選C.【點睛】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.6、B【分析】添加AC=AD,利用SAS即可得到兩三角形全等;添加∠D=∠C,利用AAS即可得到兩三角形全等,添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等.【詳解】解:A、添加AC=AD,利用SAS即可得到兩三角形全等,故此選項不符合題意;B、添加BC=BD,不能判定兩三角形全等,故此選項符合題意;C、添加∠D=∠C,利用AAS即可得到兩三角形全等,故此選項不符合題意;D、添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等,故此選項不符合題意;故選:B.【點睛】此題考查了全等三角形的判定,熟練掌握全等三角形的判定方法是解本題的關(guān)鍵.7、A【分析】利用基本作圖得到OD=OC=OD′=OC′,CD=C′D′,則根據(jù)全等三角形的判定方法可根據(jù)“SSS”可判斷△OCD≌△O′C′D′,然后根據(jù)全等三角形的性質(zhì)得到∠A′OB′=∠AOB.【詳解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根據(jù)“SSS”可判斷△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故選:A.【點睛】本題考查了作圖﹣基本作圖和全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練掌握基本作圖和全等三角形的判定定理.8、C【分析】三角形的三邊應(yīng)滿足兩邊之和大于第三邊,兩邊之差小于第三邊,據(jù)此求解.【詳解】解:A、1+2=3,不能組成三角形,不符合題意;B、3+4=7,不能組成三角形,不符合題意;C、2+3>4,能組成三角形,符合題意;D、4+5<10,不能組成三角形,不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,滿足兩條較小邊的和大于最大邊即可.9、C【分析】觀察圖形可知:DE與AC是對應(yīng)邊,B點的對應(yīng)點在DE上方兩個,在DE下方兩個共有4個滿足要求的點,也就有四個全等三角形.【詳解】根據(jù)題意,運用“SSS”可得與△ABC全等的三角形有4個,線段DE的上方有兩個點,下方也有兩個點,如圖.故選C.【點睛】本題考查三角形全等的判定方法,解答本題的關(guān)鍵是按照順序分析,要做到不重不漏.10、C【分析】設(shè)第三根木棒的長度為cm,再確定三角形第三邊的范圍,再逐一分析各選項即可得到答案.【詳解】解:設(shè)第三根木棒的長度為cm,則所以A,B,D不符合題意,C符合題意,故選C【點睛】本題考查的是三角形的三邊的關(guān)系,掌握“利用三角形的三邊關(guān)系確定第三邊的范圍”是解本題的關(guān)鍵.二、填空題1、①②④【分析】先證△AEB≌△ADC(SAS),再證△EPC≌△DPB(AAS),可判斷①;可證△APC≌△APB(SSS),判定斷②;利用特殊等腰三角形可得可判斷③,根據(jù)全等三角形個數(shù)可判斷④即可【詳解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正確;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正確;當AP=PB時,∠PAB=∠B,當AP≠PB時,∠PAB≠∠B,故③不正確;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4對全等三角形,故④正確故答案為:①②④【點睛】本題考查三角形全等判定與性質(zhì),掌握全等三角形的判定方法與性質(zhì)是解題關(guān)鍵.2、-2【分析】過E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設(shè)A(a,0),可求得E(a+4,a),點E在直線y=x-4上,當OE⊥CD時,OE最小,據(jù)此求出坐標即可.【詳解】解:如圖,過E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點C(4,0),點D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點E在直線CD上,當OE⊥CD時,OE最小,此時△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時點E的坐標為:(2,-2).故答案為:-2【點睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是確定點E運動的軌跡,確定點E的位置.3、6【分析】因為點F是CE的中點,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分別是BC、AD的中點,可得△EBC的面積是△ABC面積的一半;利用三角形的等積變換可解答.【詳解】解:如圖,點F是CE的中點,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中點,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即陰影部分的面積為6cm2.故答案為6.【點睛】本題考查了三角形面積的等積變換:若兩個三角形的高(或底)相等,面積之比等于底邊(高)之比.4、55【分析】根據(jù)題意首先證明△AOB和△DOC全等,再根據(jù)全等三角形對應(yīng)邊相等即可得出答案.【詳解】解:,,,即,在和中,,≌,.故答案為:.【點睛】本題主要考查全等三角形的應(yīng)用以及兩點之間的距離,解題的關(guān)鍵是掌握全等三角形對應(yīng)邊相等.5、4【分析】利用三角形的中線的性質(zhì)證明再證明從而可得答案.【詳解】解:點F為CE的中點,點E為AD的中點,故答案為:【點睛】本題考查的是與三角形的中線有關(guān)的面積的計算,掌握“三角形的中線把一個三角形的面積分為相等的兩部分”是解本題的關(guān)鍵.6、2【分析】首先根據(jù)同角的余角相等得到∠A=∠BOD,然后利用AAS證明△ACO≌△ODB,根據(jù)全等三角形對應(yīng)邊相等得出AC=OD=5,OC=BD=3,根據(jù)線段之間的數(shù)量關(guān)系即可求出CD的長度.【詳解】解:∵AC⊥l于點C,BD⊥l于點D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案為:2.【點睛】此題考查了全等三角形的性質(zhì)和判定,同角的余角相等,解題的關(guān)鍵是根據(jù)題意證明△ACO≌△ODB.7、2b【分析】由題意根據(jù)三角形三邊關(guān)系得到a+b-c>0,b-a-c<0,再去絕對值,合并同類項即可求解.【詳解】解:∵a,b,c是的三條邊長,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案為:2b.【點睛】本題考查的是三角形的三邊關(guān)系以及去絕對值和整式加減運算,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關(guān)鍵.8、2【分析】(1)根據(jù)路程=速度×?xí)r間求解即可;(2)根據(jù)全等三角形在判定證明△ACB≌△ECD可得AB=DE,∠A=∠E,當PQ經(jīng)過點C時,可證得△ACP≌△ECQ,則有AP=EQ,進而可得出t的方程,解方程即可.【詳解】解:(1)由題意知:AP=2t,0<t≤,故答案為:2t;(2)∵AC=EC,∠ACB=∠ECD,BC=DC,∴△ACB≌△ECD(SAS),∴DE=AB=5cm,∠A=∠E,當PQ經(jīng)過點C時,∵∠A=∠E,AC=EC,∠ACP=∠ECQ,∴△ACP≌△ECQ(ASA),∴AP=EQ,又∵AP=2t,DQ=t,∴2t=5-t,解得:t=,故答案為:.【點睛】本題考查全等三角形的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)是解答的關(guān)鍵.9、6【分析】根據(jù)平行線的性質(zhì)得出∠DAC=∠BCA,∠DCA=∠BAC,根據(jù)全等三角形的判定定理ASA可以推出△ABC≌△CDA,△ABD≌△CDB,根據(jù)全等三角形的性質(zhì)得出AD=CB,AB=CD根據(jù)全等三角形的判定定理AAS推出△AOB≌△COD,△AOD≌△COB,根據(jù)全等三角形的性質(zhì)定理得出AO=CO,BO=DO,根據(jù)全等三角形的判定定理ASA推出△AOE≌△COF,△DOE≌△BOF即可.【詳解】解:∵ABDC,ADBC,∴∠DAC=∠BCA,∠DCA=∠BAC,在△ABC和△CDA中,∴△ABC≌△CDA(ASA),∴AD=CB,AB=CD,同理△ABD≌△CDB,在△AOB和△COD中,∴△AOB≌△COD(AAS),同理△AOD≌△COB,∴AO=CO,BO=DO,在△AOE和△COF中,∴△AOE≌△COF同理△DOE≌△BOF.【點睛】本題考查了全等三角形的判定定理和性質(zhì)定理,平行線的性質(zhì)等知識點,能熟記全等三角形的判定定理和性質(zhì)定理是解此題的關(guān)鍵,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS兩直角三角形全等還有HL等,②全等三角形的對應(yīng)邊相等,對應(yīng)角相等.10、CD=BE(答案不唯一)【分析】△ABC是一個等腰直角三角形,可知,,使△ACE與△ABD全等,只需填加一組對應(yīng)角相等或的另一組邊相等即可.【詳解】解:①若所添加的條件是CD=BE,∵CD=BE,∴,∵△ABC是一個等腰直角三角形,∴,,在△ACE和△ABD中,,∴(SAS)故答案為:CD=BE,(答案不唯一)【點睛】本題主要考查了全等三角形的判定,掌握全等三角形判定方法并靈活運用是解題關(guān)鍵.三、解答題1、(1)見解析;(2)見解析.【分析】(1)作∠BAC的平分線交BD于點O,作射線CO交AB于E,線段CE即為所求;(2)作△ABC的∠ABC的外角的平分線交AD與D,作射線CD,射線CD即為所求.【詳解】(1)如圖1,線段CE為所求;(2)如圖2,線段CD為所求.【點睛】本題主要考查了基本作圖、三角形的外角、三角形的角平分線等知識點,理解三角形的內(nèi)角平分線交于一點成為解答本題的關(guān)鍵.2、的形狀是等邊三角形.【分析】利用平方數(shù)的非負性,求解a,b,c的關(guān)系,進而判斷.【詳解】解:∵,∴,∴a=b=c,∴是等邊三角形.【點睛】本題主要是考查了三角形的分類,熟練掌握各類三角形的特點,例如三邊相等為等邊三角形,含的三角形為直角三角形等,這是解決此類題的關(guān)鍵.3、(1)∠BED=∠B+∠D;(2)證明見詳解.【分析】(1)作EF∥AB,證明AB∥EF∥CD,得到∠B=∠BEF,∠D=∠DEF,即可證明∠BED=∠B+∠D;(2)根據(jù)(1)結(jié)論得到∠N=∠BAN+∠DCN,進而得到∠AMN=∠BAN+∠DCN,根據(jù)三角形外角定理得到∠AMN=∠ACM+∠CAM,∠BAN+∠DCN=∠ACM+∠CAM,再根據(jù)∠DCN=∠CAN,即可證明∠CAM=∠BAN.【詳解】解:如圖1,作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D;(2)證明:∵AB∥CD,∴由(1)得∠N=∠BAN+∠DCN,∵∠AMN=∠ANM,∴∠AMN=∠BAN+∠DCN,∵∠AMN是△ACM外角,∴∠AMN=∠ACM+∠CAM,∴∠BAN+∠DCN=∠ACM+∠CAM,∵CN平分∠ACD,∴∠DCN=∠CAN,∴∠CAM=∠BAN.【點睛】本題考查了平行線的性質(zhì),角平分線的定義,三角形的外角定理等知識,熟知相關(guān)定理并根據(jù)題意添加輔助線進行角的轉(zhuǎn)化是解題關(guān)鍵.4、(1)DE=AD+BE;(2)見解析;(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等)【分析】(1)由已知推出∠ADC=∠BEC=90°,因為∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根據(jù)AAS即可得到△ADC≌△CEB,得到AD=CE,CD=BE,即可求出答案;(2)與(1)證法類似可證出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;(3)與(1)(2)證法類似可證出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;【詳解】解:(1)證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∵DC+CE=DE,∴DE=AD+BE.(2)證明:∵AD⊥MN,BE⊥MN,∵∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.∴CE=AD,CD=BE,∴DE=CE-CD=AD-BE;(3)DE=BE-AD,理由:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD(或AD=BE-DE,BE=AD+DE等).【點睛】本題考查了鄰補角的意義,同角的余角相等,直角三角形的性質(zhì),全等三角形的判定和性質(zhì)等知識點,能根據(jù)已知證出符合全等的條件是解此題的關(guān)鍵,題型較好,綜合性比較強.5、(1)2;(2)當0≤t≤3時,DM=3-t,當3<t≤8時,DM=t-3;(3)2或1【分析】(1)根據(jù)題意得:,解得:,即可求解;(2)根據(jù)題意得:當0≤t≤3時,AM=t,則DM=3-t,當3<t≤8時,DM=t-3,即可求解;(3)根據(jù)ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME=∠FDN,從而得到當DEM與DFN全等時,DM=DN,根據(jù)題意可得M到達點D時,,M到達點C時,,N到達點D時,,N到達點A時,,然后分兩種情況:當時和當時,即可求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論