版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter7CompressibleFlow:SomePreliminaryAspects第七章可壓縮流動(dòng):相關(guān)的預(yù)備知識(shí)7.1引言空氣動(dòng)力學(xué)
A.連續(xù)流動(dòng)B.低密度和自由分子流
ContinuumFlowLow-densityandfree-moleculeflows
C.粘性流動(dòng)D.無(wú)粘流動(dòng)
ViscousFlowInviscidFlow
E.不可壓縮流動(dòng)IncompressibleFlow
F.可壓縮流動(dòng)CompressibleFlowG.亞音速流H.跨音速流I.超音速流J.高超音速流SubsonicTransonicSupersonicHypersonic可壓縮流動(dòng)的基本特征:*Thepivotalaspectofhigh-speedflowisthatthedensityisavariable--密度是變量.*Anotherpivotalaspectofhigh-speedcompressibleflowisenergy.Ahigh-speedflowisahighenergyflow.--是一個(gè)高能量的流動(dòng).*Energytransformationandtemperaturechangesareimportantconsiderations.--必須考慮能量轉(zhuǎn)換與溫度變化.
完全氣體內(nèi)能和焓熱力學(xué)復(fù)習(xí)熱力學(xué)第一定律熵及熱力學(xué)第二定律等熵關(guān)系式壓縮性定義無(wú)粘可壓縮流動(dòng)的控制方程總條件的定義有激波的超音速流動(dòng)的定性了解第七章路線圖7.2ABRIEFREVIEWOFTHERMODYNAMICS
(熱力學(xué)簡(jiǎn)要復(fù)習(xí))7.2.1Perfectgas(完全氣體)定義:Agasinwhichtheintermolecularforcesareneglectedisdefinedasaperfectgas.
(忽略分子間作用力的氣體定義為完全氣體)完全氣體滿足狀態(tài)方程:(equationofstate)
(7.1)(7.2)R為氣體常數(shù)(specificgasconstant)R=287J/(kg·K)7.2.2InternalEnergyandEnthalpy(內(nèi)能和焓)Theenergyofagivenmoleculeisthesumofitstranslational,rotational,vibrational,andelectronicenergies.
(一個(gè)給定分子的能量是其平動(dòng)動(dòng)能、轉(zhuǎn)動(dòng)動(dòng)能、振動(dòng)動(dòng)能和電子能的總和。)對(duì)于由大量分子組成的給定體積的氣體,所有分子所具有的能量的總和稱為氣體的內(nèi)能。單位質(zhì)量氣體的內(nèi)能稱為氣體的比內(nèi)能。(Theinternalenergyperunitmassofgasisdefinedasthespecificinternalenergy.)用e表示.與比內(nèi)能e相聯(lián)系的另一個(gè)量為比焓h,定義為:(7.3)對(duì)于完全氣體,e和h都只是溫度的函數(shù):--定容比熱--定壓比熱Specificheatsatconstant
volumeSpecificheatatconstantpressureT<1000K,氣體為量熱完全氣體(caloricallyperfectgas),
、為常數(shù)注意:e和h均為熱狀態(tài)變量(thermodynamicstatevariables),它們只依賴與氣體的狀態(tài)而與過程無(wú)關(guān).(theydependonlyonthestateofthegasandareindependentofanyprocess)(7.6b)-(7.6a):(7.7)定義比熱比(7.9)(7.10)7.2.3FirstLawofThermodynamics(熱力學(xué)第一定律)系統(tǒng)-system環(huán)境-surroundings邊界-boundary:外界通過邊界加于系統(tǒng)的熱增量:外界對(duì)系統(tǒng)的做的功(7.11)要使系統(tǒng)產(chǎn)生內(nèi)能增量de,有無(wú)數(shù)多種對(duì)系統(tǒng)做功和給系統(tǒng)加熱的方式(過程).--Foragivende,thereareingeneralaninfinitenumberofdifferentways(processes)bywhichheatcanbeaddedandworkdoneonthesystem.Assumethissystemisstationary:(假定系統(tǒng)為靜止的)我們主要考慮三個(gè)常見過程:1.Adiabaticprocess
(絕熱過程)
Aprocessduringwhichthereisnoheattransfer.
在過程中沒有熱傳導(dǎo)。2.Reversibleprocess(可逆過程)
Nodissipativephenomenaoccur.沒有耗散現(xiàn)象發(fā)生.
3.Isentropicprocess(等熵過程)絕熱、可逆。對(duì)于可逆過程,有:(7.12)熱力學(xué)第一定律小結(jié):熱力學(xué)第一定律就是能量守恒原理的一種表達(dá),說明能量既不能產(chǎn)生也不能消失,只能從一種形式轉(zhuǎn)換為另一種形式。
系統(tǒng)與外界的能量交換可以通過加熱(heat)、做功(work)、質(zhì)量流(massflow)實(shí)現(xiàn)。對(duì)于我們研究的封閉系統(tǒng)(closedsystem)我們不考慮質(zhì)量流。Heatisdefinedastheformofenergythatistransferredbetweenasystemanditssurroundingsbyvirtueofatemperaturedifference.(熱量是一種能量,它是由于系統(tǒng)與外界的溫度差而引起。)heattransfer:Temperatureisthedrivingforceforheattransfer.Thelargerthetemperaturedifference,thehigheristherateofheattransfer.(溫度差是熱傳導(dǎo)的驅(qū)動(dòng)力)熱傳遞的形式:Conduction(傳導(dǎo)),Convection(對(duì)流),Radiation(輻射).Work:Workistheenergytransferassociatedwithaforceactingthroughadistance.(功是力與力的作用距離相聯(lián)系的能量形式)加熱和做功的共同特征:1、都通過系統(tǒng)邊界作用于系統(tǒng)。2、系統(tǒng)擁有能量,而不是熱和功。3、熱和功都和過程相聯(lián)系,而不是狀態(tài)。4、它們都是路徑的函數(shù)。(即它們的大小依賴于過程和狀態(tài))。*可逆過程的理解:可逆過程的定義:對(duì)于一個(gè)給定的系統(tǒng)和它的外界,如果它們完全可以由終止?fàn)顟B(tài)回到他們的初始狀態(tài),這樣的過程就是可逆過程。(Ifaprocesscanbereversedsothatthesystemofparticlesanditssurroundingsarerestoredsothatthesysteminallrespectstotheirinitialconditions,theexchangeprocessissaidtobereversible.)熱力學(xué)研究的是平衡的系統(tǒng)。處于平衡狀態(tài)的系統(tǒng)內(nèi)沒有力的不平衡,沒有溫度的梯度,沒有質(zhì)量的擴(kuò)散??赡孢^程舉例:1、無(wú)摩擦的擺錘2、氣體的準(zhǔn)平衡膨脹與壓縮*不可逆過程:舉例:不可逆現(xiàn)象7.2.4EntropyandtheSecondLawofThermodynamics(熵及熱力學(xué)第二定律)熱力學(xué)第一定律解決了能量在一個(gè)過程中的守恒問題。熱力學(xué)第二定律則要解決過程會(huì)向哪個(gè)方向進(jìn)行的問題,表明能量既有“質(zhì)”(quality)也有“量”(quantity)。
Aprocesscannottakeplaceunlessitsatisfiesboththefirstandsecondlaw.(一個(gè)過程只能向同時(shí)滿足熱力學(xué)第一定律和第二定律的方向進(jìn)行。)
PROCESS1stlaw2ndlawThesecondlawleadstothedefinitionofanewpropertycalledentropy.
(熱力學(xué)第二定律引入了一個(gè)新性質(zhì),熵)
Letusdefineanewstatevariable,theentropys,asfollows:
(7.13)
whereisanincrementalamountofheataddedreversiblytothesystemandT
isthesystemtemperature.(為可逆地加于系統(tǒng)的熱增量,T
為系統(tǒng)的溫度。)
Thequantityisjustanartifice(人為的量)whichcanalwaysbeassignedtorelatetheinitialandendpointsofanirreversibleprocess,wheretheactualamountofheataddedis
(實(shí)際的加熱量)
Hence:
(7.14)
isthegenerationofentropyduetotheirreversible,dissipativephenomena
Thesedissipativephenomenaalwaysincreasetheentropys:
(7.15)Theequalssigndenotesareversibleprocess
(等號(hào)表示可逆過程)Therefore:(7.16)Iftheprocessisadiabatic,then
(7.17)
Thisisthesecondlawofthermodynamicsthattellsinwhatdirectionaprocesswilltakeplace:
(熱力學(xué)第二定律指明過程進(jìn)行的方向)
Theentropyofthesystemanditssurroundingsalwaysincreasesor,atbest,staysthesame.
(系統(tǒng)和其環(huán)境的熵總是增加的或不變的)
Insummary,theconceptofentropyincombinationwiththesecondlawallowsustopredictthedirectionthatnaturetakes.(熵與熱力學(xué)第二定律相結(jié)合,使我們能預(yù)計(jì)過程進(jìn)行的方向)Practicalcalculationofentropy(熵的實(shí)際計(jì)算)
Ifheadisaddedreversibly,then:and(7.18)Fromthedefinitionofenthalpy(7.19)and,bycombiningtheseequations:
(7.20)Foraperfectgas,andSubstitutinginprecedentrelations,oneobtain(7.21)(7.22)Withtheequationofstateor
wegetaconvenientformforintegration
Considerathermodynamicprocesswithinitialstate1andendstate2,theintegrationleadsto:
Foracaloricallyperfectgas,bothRandcp
areconstant;hence:
(7.25)
Inasimilarfashion,weobtain:(7.26)Notethatsisafunctionoftwothermodynamicstatevariables;(熵是兩個(gè)熱力學(xué)狀態(tài)參數(shù)的函數(shù))e.g.
or
7.2.5Isentropicrelations(等熵關(guān)系式)Foranadiabaticprocess,Andforanisentropicprocess,Hence:or(7.28)(7.27)Inasimilarfashion(7.29)(7.30)(7.31)Equation(7.32)isveryimportant;itrelatespressure,density,andtemperatureforanisentropicprocess.方程(7.32)非常重要,它將等熵過程中的壓強(qiáng)、密度、溫度聯(lián)系起來Whyistheseequationsoimportant?Anisentropicprocessseemssorestrictive,requiringbothadiabaticand
reversibleconditions?
Becausealargenumberofpracticalcompressibleflowscanbeassumedtobeisentropic(絕大多數(shù)實(shí)際流動(dòng)問題可以被假設(shè)為等熵的):validforacaloricallyperfectgas,(量熱完全氣體)andtheflowoutsidetheboundarylayerwhichissmallcomparedtotheentireflowfield(附面層之外的絕大多數(shù)流動(dòng))(7.32)Conceptofbarotropic:正壓流的概念滿足密度是壓力的唯一函數(shù)的流動(dòng),稱為正壓流.即(3.12)1.不可壓流2.等熵流完全氣體內(nèi)能和焓熱力學(xué)復(fù)習(xí)熱力學(xué)第一定律熵及熱力學(xué)第二定律等熵關(guān)系式壓縮性定義無(wú)粘可壓縮流動(dòng)的控制方程總條件的定義有激波的超音速流動(dòng)的定性了解第七章路線圖7.3.DEFINITIONOFCOMPRESSIBILITY(壓縮性定義)
Allrealsubstancesarecompressible
tosomegreaterorlesserextend. Whenyousqueezeorpressonthem,theirdensitywillchange.Thisisparticularlytrueofgases.(所有的真實(shí)物質(zhì)都是可壓縮的,當(dāng)我們壓擠它們時(shí),它們的密度會(huì)發(fā)生變化,對(duì)于氣體尤其是這樣.)Theamountbywhichasubstancecanbecompressedisgivenbyaspecificpropertyofthesubstancecalledthe
compressibilty,definedbelow.物質(zhì)可被壓縮的大小程度稱為物質(zhì)的壓縮性.Considerasmallelementoffluidofvolume.Thepressureexertedonthesidesoftheelementisp.Ifthepressureisincreasedbyaninfinitesimalamountdp,thevolumewillchangebyanegativeamount.
Bydefinition,thecompressibilityisgivenby:
(7.33)as
(7.36)
Physically,thecompressibilityisafractionalchangeinvolumeofthefluidelementperunitchangeinpressure.(從物理上講,壓縮性就是每單位壓強(qiáng)變化引起的流體微元單位體積內(nèi)的體積變化)
Ifthetemperatureofthefluidelementisheldconstant,thenisidentifiedastheisothermalcompressibility(等溫壓縮性)
(7.34) Iftheprocesstakesplace
isentropically,then(等熵壓縮性)(7.35)
Ifthefluidisagas,wherecompressibilityislarge,thenforagivenpressurechangefromonepointtoanotherintheflow,Eq.(7.37)statesthat
canbelarge.(如果流體為氣體,則值大,對(duì)于一個(gè)給定壓強(qiáng)變化,方程.(7.37)指出,也會(huì)大.)
Thus,isnotconstant;theflowofagasisacompressibleflow. Theexceptionisthelow-speedflowofagas.Whereisthelimit?IftheMachnumber ,theflowshouldbeconsideredcompressible.(7.37)7.4
GOVERNINGEQUATIONSFORINVISCID,COMPRESSIBLEFLOW(無(wú)粘、可壓縮流控制方程)
Forinviscid,incompressibleflow,theprimarydependentvariablesarethepressurepand
thevelocity.Hence,weneedonlytwobasicequations,namelythecontinuityandthemomentumequations.
對(duì)于無(wú)粘、不可壓縮流動(dòng),基本自變量是壓強(qiáng)p和速度。因此我們只需要兩個(gè)基本方程,即連續(xù)方程和動(dòng)量方程。Indeed,thebasicequationsarecombinedtoobtainLaplace’sequationandBernoulli’sequation,whicharetheprimarilytoolstheapplicationsdiscussedinChaps.3to6.NotethatbothandTareassumedtobeconstantthroughoutsuchinviscid,incompressibleflows.連續(xù)方程與動(dòng)量方程相結(jié)合可以得到Laplace
方程和Bernoulli方程,這是我們討論第三章至第六章內(nèi)容用到的基本工具.對(duì)于無(wú)粘不可壓縮流動(dòng),我們假定密度和溫度保持不變.Basically,incompressibleflowsobeypurelymechanicallawsanddonotneedthermodynamicconsiderations.
Incontrast,forcompressibleflow,isvariableandbecomesanunknown.Henceweneedanadditionalequation–theenergyequation–whichinturnintroducesinternalenergyeasanunknown.
對(duì)于可壓縮流,相反的是是一個(gè)變量,并且是一個(gè)未知數(shù).因此,我們需要一個(gè)附加方程-能量方程-進(jìn)而引入未知數(shù)內(nèi)能e。
Internalenergyeisrelatedtotemperature,thenTalsobecomesanimportantvariable. Therefore,the5primarydependentvariablesare:Tosolveforthesefivevariables,weneedfivegoverningequations復(fù)習(xí)第二章知識(shí):
Continuity(連續(xù)方程) Physicalprinciple:masscanbeneithercreatednordestroyed
Netmassflowoutof timerateofdecreaseof controlvolume = massinsidecontrolvolumeV throughsurfaceS
通過控制體表面S流出控制體的凈質(zhì)量流量=控制體內(nèi)的質(zhì)量減少率
(7.39)orintheformofapartialdifferentialequation
(偏微分方程)
(7.40)
whereisthedivergenceofthevectorfieldinCartesiancoordinates(在指角坐標(biāo)系下)2.Momentum(動(dòng)量方程)
Physicalprinciple:
Force=timerateofchangeofmomentum
(7.41)wherearethebodyforces,suchasgravity,orelectromagneticforcesIntermsofsubstantialderivative:(7.42a)theyandzdirectionsofthevectorcanbeeasilyfoundbysubstitution
(7.42b)(7.42c)
寫成矢量形式:whereisthesubstantialderivativewhichcanbewritteninCartesiancoordinatesas:
3.Energy Physicalprinciple: Energycanbeneithercreatednordestroyed;itcanonlychangeinform(7.43)Equationofenergycanalsobewrittenas:
Assumethattheflowisadiabaticandthatbodyforcesarenegligible.Forsuchaflow
(7.44)(7.45)4.Equationofstateforaperfectgas:5.Internalenergyfora
caloricallyperfectgas:Wehavenow5equationsfor5unknowns.7.5DEFINITIONOFTOTALCONDITIONS
(總條件的定義)
Considerafluidelementpassingthroughagivenpointinaflowwherethelocalpressure,temperature,density,Machnumber,andvelocity(localconditions)
are
and,
respectively.
假設(shè)流體微團(tuán)通過一個(gè)給定點(diǎn),對(duì)應(yīng)的當(dāng)?shù)貕簭?qiáng)、溫度、密度、馬赫數(shù)、速度分別為。
Here,arestaticquantities,i.e.,staticpressure,statictemperature,staticdensity,respectively.
這里,是分別靜變量(靜參數(shù)),即靜壓、靜溫、靜密度。Nowimaginethatyougrabholdofthefluidelementand
adiabaticallyslowitdowntozerovelocity.Clearly,youwouldexpect(correctly)thatthevaluesofwouldchangeastheelementisbroughttorest.Inparticular,thevalueofthetemperatureofthefluidelementafterithasbeenbroughttorest
adiabaticallyisdefinedasthetotaltemperature,denotedby.特別地,假想流體微團(tuán)被絕熱地減速為靜止所對(duì)應(yīng)的溫度,定義此時(shí)流體微團(tuán)對(duì)應(yīng)的溫度為總溫.
Thecorrespondingvalueofenthalpyisdefinedastotalenthalpyh0,whereh0=cpT0
foracaloricallyperfectgas.
*如何確定總溫?
Theenergyequation,Eq.(7.44),providessomeimportantinformationabouttotalenthalpyandhencetotaltemperature.
(由能量方程可以的到總焓、因而總溫的重要信息。)Assumethattheflowisadiabaticandthatbodyforcesarenegligible,thentheequationofenergycanbewrittenas:
(7.45)注意(7.45)式的前提條件:無(wú)粘、絕熱、忽略體積力.ExpandingbyusingthefollowingvectoridentityAndnotingthatSubstitutingthecontinuityequation(7.47)(7.48)
(7.46)(7.45)(7.48)(7.45)+(7.48),note:(7.51)
Iftheflowissteady,(如果流動(dòng)是定常的)
Fromthedefinitionofthesubstantialderivative Thenthetimerateofchangeofh+V2/2followingamovingfluidelementiszero:(7.53)RecallthattheassumptionswhichledtoEq.(7.53)arethattheflowissteady,adiabatic,andinviscid.(7.52)Sinceh0isdefinedasthatenthalpywhichwouldexistatapointifthefluidelementwerebroughttorestadiabatically,whereV=0andhenceh=h0,thenthevalueoftheconstantish0.
因?yàn)槲覀兌x總焓h0為流體微元被絕熱地減速為靜止時(shí)對(duì)應(yīng)的焓值,因此有能量方程我們可以得到總焓的值,即上式(7.53)中的常數(shù)。因此有:(7.54)Equation(7.54)isimportant;itstatesthatatanypointinaflow,thetotalenthalpyisgivenbythesumofthestaticenthalpyplusthekineticenergy,allperunitofmass.方程(7.54)很重要,它表明在流動(dòng)中任一點(diǎn),總焓由每單位體積的靜焓和動(dòng)能之和組成。
有了總焓的定義,能量方程可以用總焓來表示:對(duì)于定常、絕熱、無(wú)粘流動(dòng),方程(7.52)可以寫成: ori.e.thetotalenthalpyisconstantalongastreamline.
即總焓沿流線為常數(shù)。
Ifallthestreamlinesofthefloworiginatefromacommonuniformfreestream(astheusuallythecase),thentheh0isthesameforeachline.
如果像通常的情況那樣,所有的流線都來自均勻自由來流,那么h0在不同流線也是相等的。
h0=const,throughouttheentireflow,andh0isequaltoitsfreestreamvalue.總焓在整個(gè)流場(chǎng)中為常數(shù),等于自由來流對(duì)應(yīng)的總焓。(7.55)Foracaloricallyperfectgas,h0=cpT0
.Thus,theaboveresultsalsostatethatthetotaltemperature
isconstantthroughoutthesteady,inviscid,adiabaticflowofacaloricallyperfectgas;i.e.對(duì)于量熱完全氣體,h0=cpT0
。因此,上面的結(jié)果也表明了對(duì)于定常、無(wú)粘、絕熱的量熱完全氣體,總溫保持不變,即(7.56)Keepinmindthattheabovediscussionmarbledtwotrainsofthought:Ontheonehand,wedealtwiththegeneralconceptofanadiabaticflowfield[whichledtoEqs.(7.51)to(7.53)],andontheotherhand,wedealtwiththedefinitionoftotalenthalpy[whichledtoEq.(7.54)].
要牢記在心的是:上面的討論是沿著兩條思路進(jìn)行的,一方面,我們討論了絕熱流場(chǎng)的一般概念[導(dǎo)出了能量方程(7.51)至(7.53)];另一方面,我們討論了總焓的定義[給出了(7.54)式]。(7.51)(7.52)(7.53)(7.54)
總壓與總密度的定義:
回到本節(jié)的開頭,我們考慮流體微團(tuán)通過一個(gè)給定點(diǎn),對(duì)應(yīng)的當(dāng)?shù)貕簭?qiáng)、溫度、密度、馬赫數(shù)、速度分別為。
Onceagain,imaginethatyougrabholdofthefluidelementandslowitdowntozerovelocity,butthistime,letusslowitdownboth
adiabaticallyandreversibly.Thatis,letusslowthefluidelementdowntozerovelocity
isentropically.Whenthefluidelementisbroughttorestisentropically,theresultingpressureanddensityaredefinedasthetotalpressurep0
andtotaldensity.
定義:當(dāng)流體微元被等熵地減速至靜止時(shí)對(duì)應(yīng)的壓強(qiáng)和密度被定義為其總壓和總密度。Sinceanisentropicprocessisalsoadiabatic,thedefinitionoftotaltemperatureremainsunchanged.Asbefore,keepinmindthatwedonothavetoactuallybringtheflowtorestinreallifeinordertotalkabouttotalpressureandtotaldensity;rather,thearedefinedquantitiesthatwouldexistatapointinaflowif(inourimagination)thefluidelementpassingthroughthatpointwerebroughttorestisentropically.Therefore,atagivenpointinaflow,wherethestaticpressureandstaticdensityarepandρ,respectively,wecanalsoassignavalueoftotalpressurep0,andtotaldensityρ0definedasabove.6.SUMMARY
TotaltemperatureT0andtotalenthalpyh0aredefinedasthepropertiesthatwouldexistiftheflowisslowedtozerovelocityadiaba
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 某著名企業(yè)雙創(chuàng)項(xiàng)目介紹
- 某著名企業(yè)商務(wù)禮儀培訓(xùn)資料
- 《GB-Z 31477-2015航空電子過程管理 航空電子產(chǎn)品高加速試驗(yàn)定義和應(yīng)用指南》專題研究報(bào)告
- 《GBT 16538-2008聲學(xué) 聲壓法測(cè)定噪聲源聲功率級(jí) 現(xiàn)場(chǎng)比較法》專題研究報(bào)告
- 《GBT 21778-2008化學(xué)品 非嚙齒類動(dòng)物亞慢性(90天)經(jīng)口毒性試驗(yàn)方法》專題研究報(bào)告
- 《GBT 15825.5-2008金屬薄板成形性能與試驗(yàn)方法 第5部分:彎曲試驗(yàn)》專題研究報(bào)告
- 《GBT 2317.2-2008電力金具試驗(yàn)方法 第2部分:電暈和無(wú)線電干擾試驗(yàn)》專題研究報(bào)告
- 道路安全出行教育培訓(xùn)課件
- 道路交通安全法安全培訓(xùn)課件
- 2026年國(guó)際注冊(cè)內(nèi)部審計(jì)師考試試題題庫(kù)(答案+解析)
- 鞋廠與總代商的合作方案
- 2025年貿(mào)易經(jīng)濟(jì)專業(yè)題庫(kù)- 貿(mào)易教育的現(xiàn)狀和發(fā)展趨勢(shì)
- 核子儀考試題及答案
- DB46-T 481-2019 海南省公共機(jī)構(gòu)能耗定額標(biāo)準(zhǔn)
- 勞動(dòng)合同【2026版-新規(guī)】
- 電子元器件入廠質(zhì)量檢驗(yàn)規(guī)范標(biāo)準(zhǔn)
- 中藥炮制的目的及對(duì)藥物的影響
- 688高考高頻詞拓展+默寫檢測(cè)- 高三英語(yǔ)
- 學(xué)生公寓物業(yè)管理服務(wù)服務(wù)方案投標(biāo)文件(技術(shù)方案)
- 食品檢驗(yàn)檢測(cè)技術(shù)專業(yè)介紹
- 2025年事業(yè)單位筆試-貴州-貴州財(cái)務(wù)(醫(yī)療招聘)歷年參考題庫(kù)含答案解析(5卷套題【單項(xiàng)選擇100題】)
評(píng)論
0/150
提交評(píng)論