版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共2頁(yè)揚(yáng)州市職業(yè)大學(xué)《視覺(jué)傳達(dá)設(shè)計(jì)創(chuàng)意思維》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在目標(biāo)檢測(cè)中,YOLO(YouOnlyLookOnce)算法的特點(diǎn)是()A.檢測(cè)速度快B.檢測(cè)精度高C.適用于小目標(biāo)檢測(cè)D.對(duì)遮擋不敏感2、在計(jì)算機(jī)視覺(jué)的圖像配準(zhǔn)任務(wù)中,將不同視角或時(shí)間拍攝的圖像進(jìn)行對(duì)齊,以下哪種變換模型可能適用于具有較大形變的圖像配準(zhǔn)?()A.剛性變換B.仿射變換C.投影變換D.非線性變換3、計(jì)算機(jī)視覺(jué)在無(wú)人駕駛中的應(yīng)用至關(guān)重要。假設(shè)要通過(guò)車(chē)載攝像頭識(shí)別道路上的交通標(biāo)志和標(biāo)線,以下關(guān)于應(yīng)對(duì)復(fù)雜環(huán)境變化的策略,哪一項(xiàng)是不正確的?()A.利用多模態(tài)數(shù)據(jù)融合,如結(jié)合攝像頭和激光雷達(dá)的信息B.定期更新模型,適應(yīng)新出現(xiàn)的交通標(biāo)志和標(biāo)線C.只依靠單一攝像頭的圖像信息,不考慮其他傳感器D.對(duì)不同天氣和光照條件下的數(shù)據(jù)進(jìn)行增強(qiáng)訓(xùn)練4、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,假設(shè)要從一組不同角度拍攝的二維圖像中重建出物體的三維模型。這些圖像可能存在噪聲和拍攝誤差。為了獲得準(zhǔn)確的三維重建結(jié)果,以下哪種技術(shù)是重要的?()A.基于立體視覺(jué)的方法,通過(guò)匹配不同圖像中的對(duì)應(yīng)點(diǎn)B.直接使用二維圖像的平均信息來(lái)估計(jì)三維形狀C.忽略圖像中的噪聲和誤差,進(jìn)行簡(jiǎn)單的重建D.隨機(jī)生成三維模型,然后與二維圖像進(jìn)行匹配5、在計(jì)算機(jī)視覺(jué)的圖像修復(fù)任務(wù)中,假設(shè)要填補(bǔ)圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復(fù)圖像的完整性和真實(shí)性?()A.基于擴(kuò)散的修復(fù)方法B.基于深度學(xué)習(xí)的圖像修復(fù)模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進(jìn)行修復(fù),保留圖像的缺失部分6、計(jì)算機(jī)視覺(jué)中的圖像修復(fù)是填補(bǔ)圖像中的缺失或損壞部分。假設(shè)我們有一張老照片,其中部分區(qū)域被損壞,需要進(jìn)行修復(fù)。以下哪種圖像修復(fù)方法能夠生成自然、合理的內(nèi)容,與周?chē)鷧^(qū)域融合良好?()A.基于紋理合成的修復(fù)方法B.基于插值和填充的修復(fù)方法C.基于深度學(xué)習(xí)的圖像修復(fù)網(wǎng)絡(luò),如ContextEncoderD.基于圖像分解和重構(gòu)的修復(fù)方法7、計(jì)算機(jī)視覺(jué)中的車(chē)牌識(shí)別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個(gè)高速公路收費(fèi)站實(shí)現(xiàn)準(zhǔn)確的車(chē)牌識(shí)別,以下關(guān)于車(chē)牌識(shí)別方法的描述,正確的是:()A.基于邊緣檢測(cè)和字符分割的方法對(duì)車(chē)牌的變形和污漬具有很強(qiáng)的適應(yīng)性B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車(chē)牌圖像中識(shí)別出字符,但對(duì)車(chē)牌的傾斜和光照不均敏感C.車(chē)牌識(shí)別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無(wú)法正常運(yùn)行D.車(chē)牌識(shí)別的準(zhǔn)確率只取決于車(chē)牌圖像的清晰度,與車(chē)牌的顏色和字體無(wú)關(guān)8、假設(shè)要構(gòu)建一個(gè)能夠識(shí)別人臉表情的計(jì)算機(jī)視覺(jué)系統(tǒng),用于情感分析和人機(jī)交互??紤]到表情的細(xì)微變化和個(gè)體差異,以下哪種模型架構(gòu)可能更適合處理這種復(fù)雜的任務(wù)?()A.多層感知機(jī)B.卷積神經(jīng)網(wǎng)絡(luò)C.循環(huán)神經(jīng)網(wǎng)絡(luò)D.生成對(duì)抗網(wǎng)絡(luò)9、在計(jì)算機(jī)視覺(jué)的實(shí)際應(yīng)用中,模型的實(shí)時(shí)性是一個(gè)重要的考慮因素。以下關(guān)于實(shí)時(shí)性的描述,不正確的是()A.對(duì)于一些需要實(shí)時(shí)響應(yīng)的應(yīng)用,如自動(dòng)駕駛和工業(yè)檢測(cè),模型的處理速度至關(guān)重要B.模型的復(fù)雜度、計(jì)算資源和算法效率都會(huì)影響實(shí)時(shí)性C.可以通過(guò)模型壓縮、硬件加速和優(yōu)化算法等方法來(lái)提高模型的實(shí)時(shí)性D.實(shí)時(shí)性只與模型本身有關(guān),與硬件設(shè)備和系統(tǒng)架構(gòu)無(wú)關(guān)10、計(jì)算機(jī)視覺(jué)中的眼底圖像分析對(duì)于眼科疾病的診斷具有重要意義。以下關(guān)于眼底圖像分析的描述,不準(zhǔn)確的是()A.可以檢測(cè)眼底的病變、血管異常和視網(wǎng)膜結(jié)構(gòu)的改變B.深度學(xué)習(xí)方法在眼底圖像分析中能夠自動(dòng)提取特征和進(jìn)行疾病分類(lèi)C.眼底圖像分析需要高質(zhì)量的圖像數(shù)據(jù)和專(zhuān)業(yè)的醫(yī)學(xué)知識(shí)標(biāo)注D.眼底圖像分析技術(shù)已經(jīng)非常成熟,能夠替代醫(yī)生的診斷11、在計(jì)算機(jī)視覺(jué)的應(yīng)用中,人臉識(shí)別是一個(gè)常見(jiàn)的任務(wù)。假設(shè)一個(gè)公司要建立一個(gè)門(mén)禁系統(tǒng),通過(guò)人臉識(shí)別來(lái)允許員工進(jìn)入。為了提高人臉識(shí)別的準(zhǔn)確性和魯棒性,以下哪種技術(shù)通常會(huì)被采用?()A.基于幾何特征的人臉識(shí)別B.基于模板匹配的人臉識(shí)別C.基于深度學(xué)習(xí)的人臉識(shí)別,結(jié)合多模態(tài)數(shù)據(jù)D.基于顏色特征的人臉識(shí)別12、在計(jì)算機(jī)視覺(jué)的醫(yī)學(xué)圖像分析中,輔助醫(yī)生進(jìn)行疾病診斷。假設(shè)要通過(guò)分析CT圖像檢測(cè)腫瘤的位置和大小,以下關(guān)于醫(yī)學(xué)圖像計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.計(jì)算機(jī)視覺(jué)算法可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進(jìn)一步判斷B.不同患者的個(gè)體差異和掃描參數(shù)的變化對(duì)腫瘤檢測(cè)結(jié)果沒(méi)有影響C.結(jié)合醫(yī)生的先驗(yàn)知識(shí)和計(jì)算機(jī)視覺(jué)技術(shù)能夠提高腫瘤檢測(cè)的準(zhǔn)確性和可靠性D.醫(yī)學(xué)圖像中的噪聲和偽影對(duì)計(jì)算機(jī)視覺(jué)算法的性能沒(méi)有影響13、在計(jì)算機(jī)視覺(jué)的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張不同視角拍攝的同一物體的圖像進(jìn)行對(duì)齊。以下關(guān)于圖像配準(zhǔn)方法的描述,正確的是:()A.基于特征點(diǎn)的配準(zhǔn)方法對(duì)圖像的旋轉(zhuǎn)、縮放和平移具有不變性,但特征點(diǎn)的提取容易出錯(cuò)B.基于灰度的配準(zhǔn)方法計(jì)算簡(jiǎn)單,但對(duì)光照變化和噪聲敏感C.深度學(xué)習(xí)中的自監(jiān)督學(xué)習(xí)方法在圖像配準(zhǔn)中無(wú)法學(xué)習(xí)到有效的特征表示D.圖像配準(zhǔn)的精度只取決于配準(zhǔn)算法的選擇,與圖像的質(zhì)量和特征無(wú)關(guān)14、在計(jì)算機(jī)視覺(jué)的文本檢測(cè)和識(shí)別任務(wù)中,假設(shè)要從一張圖片中提取并識(shí)別其中的文字信息。以下關(guān)于文本檢測(cè)和識(shí)別的描述,哪一項(xiàng)是不正確的?()A.可以先通過(guò)文本檢測(cè)算法定位圖片中的文本區(qū)域,然后進(jìn)行識(shí)別B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在文本識(shí)別中表現(xiàn)出色,能夠準(zhǔn)確識(shí)別各種字體和風(fēng)格的文字C.文本檢測(cè)和識(shí)別對(duì)于彎曲、傾斜和模糊的文字能夠輕松應(yīng)對(duì),沒(méi)有任何困難D.可以結(jié)合光學(xué)字符識(shí)別(OCR)技術(shù),將圖片中的文字轉(zhuǎn)換為可編輯的文本15、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,假設(shè)要從一組二維圖像恢復(fù)出物體的三維結(jié)構(gòu)。以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺(jué)的方法需要多視角的圖像,并且對(duì)相機(jī)的標(biāo)定精度要求不高B.結(jié)構(gòu)光方法能夠快速準(zhǔn)確地獲取物體表面的三維信息,但對(duì)環(huán)境光敏感C.從運(yùn)動(dòng)中恢復(fù)結(jié)構(gòu)(SfM)方法只適用于靜態(tài)場(chǎng)景,無(wú)法處理動(dòng)態(tài)物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型16、在計(jì)算機(jī)視覺(jué)的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲。以下關(guān)于圖像去噪方法的描述,正確的是:()A.中值濾波能夠有效地去除椒鹽噪聲,但會(huì)使圖像變得模糊B.均值濾波在去除噪聲的同時(shí)能夠很好地保留圖像的細(xì)節(jié)信息C.小波變換去噪方法計(jì)算復(fù)雜度高,不適合處理大規(guī)模圖像D.所有的圖像去噪方法都能夠完全恢復(fù)出原始的無(wú)噪圖像17、計(jì)算機(jī)視覺(jué)在安防監(jiān)控領(lǐng)域有廣泛應(yīng)用。假設(shè)要通過(guò)監(jiān)控?cái)z像頭實(shí)時(shí)檢測(cè)人群中的異常行為,以下關(guān)于實(shí)時(shí)性和準(zhǔn)確性的平衡,哪一項(xiàng)是最為關(guān)鍵的?()A.優(yōu)先保證實(shí)時(shí)性,即使準(zhǔn)確性略有降低B.優(yōu)先保證準(zhǔn)確性,允許一定的延遲C.不考慮實(shí)時(shí)性和準(zhǔn)確性,只要能檢測(cè)出異常行為即可D.完全無(wú)法平衡實(shí)時(shí)性和準(zhǔn)確性,只能根據(jù)具體情況選擇其一18、在計(jì)算機(jī)視覺(jué)的圖像配準(zhǔn)任務(wù)中,需要將不同視角或時(shí)間拍攝的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張具有一定旋轉(zhuǎn)和平移差異的圖像進(jìn)行配準(zhǔn),以下關(guān)于圖像配準(zhǔn)方法的描述,正確的是:()A.基于特征點(diǎn)匹配的圖像配準(zhǔn)方法對(duì)圖像的變形和光照變化不敏感B.直接使用像素值的相似性度量就能實(shí)現(xiàn)準(zhǔn)確的圖像配準(zhǔn)C.圖像配準(zhǔn)不需要考慮圖像的分辨率和比例尺差異D.深度學(xué)習(xí)在圖像配準(zhǔn)中的應(yīng)用還不成熟,不如傳統(tǒng)方法有效19、在計(jì)算機(jī)視覺(jué)的應(yīng)用于自動(dòng)駕駛領(lǐng)域,需要實(shí)時(shí)檢測(cè)道路上的交通標(biāo)志和標(biāo)線。假設(shè)車(chē)輛在高速行駛中,以下哪種技術(shù)能夠快速準(zhǔn)確地檢測(cè)到各種交通標(biāo)志,并且對(duì)光照變化和遮擋具有較強(qiáng)的魯棒性?()A.基于顏色和形狀特征的檢測(cè)方法B.基于深度學(xué)習(xí)的檢測(cè)方法,結(jié)合多尺度特征C.基于邊緣檢測(cè)和形態(tài)學(xué)操作的方法D.基于模板匹配和特征點(diǎn)匹配的方法20、計(jì)算機(jī)視覺(jué)在醫(yī)學(xué)影像分析中的應(yīng)用有助于輔助醫(yī)生進(jìn)行診斷和治療。假設(shè)要分析一張腦部CT圖像,以下關(guān)于醫(yī)學(xué)影像分析中的計(jì)算機(jī)視覺(jué)應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)分割腦組織、檢測(cè)病變區(qū)域等方法,為醫(yī)生提供定量的分析結(jié)果B.深度學(xué)習(xí)模型能夠自動(dòng)學(xué)習(xí)醫(yī)學(xué)影像中的特征,輔助醫(yī)生發(fā)現(xiàn)潛在的疾病C.計(jì)算機(jī)視覺(jué)在醫(yī)學(xué)影像分析中的應(yīng)用需要遵循嚴(yán)格的醫(yī)學(xué)倫理和法規(guī)D.計(jì)算機(jī)視覺(jué)系統(tǒng)可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進(jìn)一步審查和判斷21、計(jì)算機(jī)視覺(jué)中的視覺(jué)跟蹤算法常用于跟蹤運(yùn)動(dòng)目標(biāo)。假設(shè)要跟蹤一只在森林中奔跑的動(dòng)物,以下關(guān)于視覺(jué)跟蹤算法的描述,哪一項(xiàng)是不正確的?()A.基于模型的跟蹤算法通過(guò)建立目標(biāo)的模型來(lái)預(yù)測(cè)其位置和狀態(tài)B.基于特征的跟蹤算法依賴于目標(biāo)的顯著特征進(jìn)行跟蹤C(jī).視覺(jué)跟蹤算法在目標(biāo)發(fā)生快速變形或完全遮擋時(shí)仍能保持準(zhǔn)確跟蹤D.結(jié)合多種線索和信息的融合跟蹤算法可以提高跟蹤的穩(wěn)定性和可靠性22、在計(jì)算機(jī)視覺(jué)的圖像增強(qiáng)任務(wù)中,旨在改善圖像的質(zhì)量。假設(shè)一張低光照條件下拍攝的照片需要增強(qiáng)。以下關(guān)于圖像增強(qiáng)方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)直方圖均衡化方法增強(qiáng)圖像的對(duì)比度B.基于濾波的方法能夠去除圖像中的噪聲,同時(shí)增強(qiáng)細(xì)節(jié)C.圖像增強(qiáng)可以無(wú)限制地提高圖像的質(zhì)量,不存在過(guò)度增強(qiáng)的問(wèn)題D.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)也可以用于圖像增強(qiáng)23、在計(jì)算機(jī)視覺(jué)中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個(gè)區(qū)域具有相似的特征。以下關(guān)于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進(jìn)行B.深度學(xué)習(xí)方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(luò)(FCN)C.圖像分割在醫(yī)學(xué)影像分析、自動(dòng)駕駛場(chǎng)景理解等方面具有重要作用D.圖像分割的結(jié)果總是完美的,能夠準(zhǔn)確地將圖像中的所有物體都分割出來(lái)24、在計(jì)算機(jī)視覺(jué)的圖像配準(zhǔn)任務(wù)中,需要將不同時(shí)間或視角拍攝的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進(jìn)行精確配準(zhǔn),圖像中存在地形變化和云層遮擋。以下哪種圖像配準(zhǔn)方法在這種困難情況下能夠取得較好的效果?()A.基于特征的配準(zhǔn)B.基于灰度的配準(zhǔn)C.基于變換模型的配準(zhǔn)D.基于深度學(xué)習(xí)的配準(zhǔn)25、在計(jì)算機(jī)視覺(jué)的立體視覺(jué)中,需要通過(guò)兩個(gè)或多個(gè)相機(jī)獲取的圖像來(lái)計(jì)算深度信息。假設(shè)要為一個(gè)自動(dòng)駕駛汽車(chē)構(gòu)建立體視覺(jué)系統(tǒng),以測(cè)量與前方障礙物的距離,同時(shí)要考慮實(shí)時(shí)性和準(zhǔn)確性的要求。以下哪種立體匹配算法在這種應(yīng)用場(chǎng)景中表現(xiàn)最優(yōu)?()A.基于區(qū)域的匹配B.基于特征的匹配C.基于深度學(xué)習(xí)的匹配D.全局優(yōu)化匹配26、在計(jì)算機(jī)視覺(jué)的應(yīng)用中,人臉識(shí)別技術(shù)受到廣泛關(guān)注。假設(shè)一個(gè)人臉識(shí)別系統(tǒng)正在進(jìn)行身份驗(yàn)證,以下關(guān)于人臉識(shí)別的描述,正確的是:()A.只依靠面部的幾何形狀信息就能實(shí)現(xiàn)準(zhǔn)確的人臉識(shí)別B.光照變化和面部表情對(duì)人臉識(shí)別的準(zhǔn)確率沒(méi)有影響C.結(jié)合深度學(xué)習(xí)模型和多模態(tài)信息,如紅外圖像,可以提高人臉識(shí)別的性能和可靠性D.人臉識(shí)別系統(tǒng)不需要考慮數(shù)據(jù)的隱私和安全問(wèn)題27、在計(jì)算機(jī)視覺(jué)的圖像生成任務(wù)中,除了生成新的圖像,還可以對(duì)已有圖像進(jìn)行風(fēng)格轉(zhuǎn)換。假設(shè)我們要將一張照片轉(zhuǎn)換為油畫(huà)風(fēng)格,以下哪種方法能夠?qū)崿F(xiàn)逼真的風(fēng)格轉(zhuǎn)換效果?()A.基于圖像濾波和變換的方法B.基于深度學(xué)習(xí)的風(fēng)格遷移算法,如CycleGANC.基于圖像融合和合成的方法D.基于顏色映射和紋理合成的方法28、在計(jì)算機(jī)視覺(jué)的圖像增強(qiáng)任務(wù)中,假設(shè)要提高一張低光照?qǐng)D像的質(zhì)量。以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級(jí),但可能會(huì)導(dǎo)致細(xì)節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時(shí)也會(huì)模糊圖像的邊緣C.伽馬校正只適用于校正過(guò)亮的圖像,對(duì)于低光照?qǐng)D像效果不佳D.所有的圖像增強(qiáng)方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量29、計(jì)算機(jī)視覺(jué)在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中的應(yīng)用可以提供更沉浸式的體驗(yàn)。假設(shè)要在VR環(huán)境中實(shí)時(shí)跟蹤用戶的頭部運(yùn)動(dòng)并相應(yīng)地更新場(chǎng)景,以下關(guān)于VR/AR計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.簡(jiǎn)單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運(yùn)動(dòng)跟蹤需求B.計(jì)算機(jī)視覺(jué)在VR/AR中的應(yīng)用主要關(guān)注圖像生成,而不是跟蹤和定位C.結(jié)合視覺(jué)特征提取和深度學(xué)習(xí)的頭部運(yùn)動(dòng)跟蹤算法可以實(shí)現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對(duì)計(jì)算機(jī)視覺(jué)算法的性能沒(méi)有影響30、當(dāng)進(jìn)行視頻中的動(dòng)作識(shí)別時(shí),假設(shè)要分析一段運(yùn)動(dòng)員訓(xùn)練的視頻,識(shí)別出其中的各種動(dòng)作,如跑步、跳躍和舉重等。視頻中的動(dòng)作可能存在速度變化、遮擋和
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年理財(cái)規(guī)劃師之三級(jí)理財(cái)規(guī)劃師考試題庫(kù)500道含答案【鞏固】
- 2026年理財(cái)規(guī)劃師之三級(jí)理財(cái)規(guī)劃師考試題庫(kù)500道(培優(yōu))
- 2025年濰坊市北京大學(xué)現(xiàn)代農(nóng)業(yè)研究院(濰坊現(xiàn)代農(nóng)業(yè)山東省實(shí)驗(yàn)室)招聘工作人員參考題庫(kù)附答案
- 2026年資料員之資料員基礎(chǔ)知識(shí)考試題庫(kù)300道附答案【培優(yōu)a卷】
- 2026年注冊(cè)安全工程師題庫(kù)300道及參考答案(培優(yōu))
- 2024年瀘縣幼兒園教師招教考試備考題庫(kù)及答案1套
- 晉中市平遙縣古城社區(qū)衛(wèi)生服務(wù)中心招聘臨聘醫(yī)師考試題庫(kù)附答案
- 2025上海市第一人民醫(yī)院招聘1人備考核心試題附答案解析
- 2025華能核電開(kāi)發(fā)有限公司所屬基層企業(yè)福建寧德社會(huì)招聘40人備考核心試題附答案解析
- 2026年本溪市教育系統(tǒng)冬季“名校優(yōu)生”引進(jìn)急需 緊缺人才(本溪市第一中學(xué))考試核心題庫(kù)及答案解析
- 共同買(mǎi)廠房協(xié)議書(shū)
- 2025貴州省專(zhuān)業(yè)技術(shù)人員繼續(xù)教育公需科目考試題庫(kù)(2025公需課課程)
- 美國(guó)國(guó)家公園管理
- 人教版五年級(jí)語(yǔ)文上冊(cè)期末考試卷【含答案】
- 四川省2025年高考綜合改革適應(yīng)性演練測(cè)試化學(xué)試題含答案
- 醫(yī)療機(jī)構(gòu)安全生產(chǎn)事故綜合應(yīng)急預(yù)案
- 水利信息化計(jì)算機(jī)監(jiān)控系統(tǒng)單元工程質(zhì)量驗(yàn)收評(píng)定表、檢查記錄
- 《管理學(xué)原理》課程期末考試復(fù)習(xí)題庫(kù)(含答案)
- DL-T+5174-2020燃?xì)?蒸汽聯(lián)合循環(huán)電廠設(shè)計(jì)規(guī)范
- 消費(fèi)者在直播帶貨中沖動(dòng)行為的影響因素探究
- 人工智能中的因果驅(qū)動(dòng)智慧樹(shù)知到期末考試答案章節(jié)答案2024年湘潭大學(xué)
評(píng)論
0/150
提交評(píng)論