難點解析-北師大版9年級數(shù)學(xué)上冊期末試卷附完整答案詳解【網(wǎng)校專用】_第1頁
難點解析-北師大版9年級數(shù)學(xué)上冊期末試卷附完整答案詳解【網(wǎng)校專用】_第2頁
難點解析-北師大版9年級數(shù)學(xué)上冊期末試卷附完整答案詳解【網(wǎng)校專用】_第3頁
難點解析-北師大版9年級數(shù)學(xué)上冊期末試卷附完整答案詳解【網(wǎng)校專用】_第4頁
難點解析-北師大版9年級數(shù)學(xué)上冊期末試卷附完整答案詳解【網(wǎng)校專用】_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北師大版9年級數(shù)學(xué)上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、揚(yáng)帆中學(xué)有一塊長,寬的矩形空地,計劃在這塊空地上劃出四分之一的區(qū)域種花,小禹同學(xué)設(shè)計方案如圖所示,求花帶的寬度.設(shè)花帶的寬度為,則可列方程為()A. B.C. D.2、已知A、B兩地相距10km,在地圖上相距10cm,則這張地圖的比例尺是(

).A.100000:1 B.1000:1 C.1:100000 D.1:10003、一元二次方程,用配方法解該方程,配方后的方程為()A. B.C. D.4、如圖,在平面直角坐標(biāo)系中、四邊形OABC為菱形,O為原點,A點坐標(biāo)為(8,0),∠AOC=60°,則對角線交點E的坐標(biāo)為(

)A.(4,2) B.(2,4) C.(2,6) D.(6,2)5、關(guān)于x的方程有兩個實數(shù)根,,且,那么m的值為(

)A. B. C.或1 D.或46、如圖1,點Q為菱形ABCD的邊BC上一點,將菱形ABCD沿直線AQ翻折,點B的對應(yīng)點P落在BC的延長線上.已知動點M從點B出發(fā),在射線BC上以每秒1個單位長度運動.設(shè)點M運動的時間為x,△APM的面積為y.圖2為y關(guān)于x的函數(shù)圖象,則菱形ABCD的面積為(

)A.12 B.24 C.10 D.20二、多選題(6小題,每小題2分,共計12分)1、下列多邊形中,一定不相似的是(

)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形2、如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論中正確的是()A.AC=AD B.BD⊥AC C.四邊形ACED是菱形 D.∠ADC=60°3、下列關(guān)于x的方程的說法正確的是()A.一定有兩個實數(shù)根 B.可能只有一個實數(shù)根C.可能無實數(shù)根 D.當(dāng)時,方程有兩個負(fù)實數(shù)根4、(多選)為了推動“成渝地區(qū)雙城經(jīng)濟(jì)圈”的建設(shè),某工廠為了推進(jìn)產(chǎn)業(yè)協(xié)作“一條鏈”,自2021年1月開始科學(xué)整改,其月利潤(萬元)與月份之間的變化如圖所示,整改前是反比例函數(shù)圖象的一部分,整改后是一次函數(shù)圖象的一部分,下列選項正確的有(

)A.4月份的利潤為50萬元B.治污改造完成后每月利潤比前一個月增加30萬元C.治污改造完成前后共有4個月的利潤低于100萬元D.9月份該廠利潤達(dá)到200萬元5、如圖,,AD與BC相交于點O,那么在下列比例式中,不正確的是(

)A. B.C. D.6、下列方程中含有一次項的是(

)A. B. C. D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點,頂點都是格點的三角形稱為格點三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點三角形,則該圖中所有與Rt△ABC相似的格點三角形中.面積最大的三角形的斜邊長是_____.2、已知方程x2﹣3x+1=0的根是x1和x2,則x1+x2﹣x1x2=___.3、如圖,在矩形紙片ABCD中,AB=12,AD=5,P為DC邊上的動點(點P不與點D,C重合),將紙片沿AP折疊(1)當(dāng)四邊形ADPD′是正方形時,CD′的長為___.(2)當(dāng)CD′的長最小時,PC的長為___.4、如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=2cm,點P在邊AC上,以2cm/s的速度從點A向點C移動,點Q在邊CB上,以1cm/s的速度從點C向點B移動.點P、Q同時出發(fā),且當(dāng)一點移動到終點時,另一點也隨之停止,連接PQ,當(dāng)△PQC的面積為3cm2時,P、Q運動的時間是_____秒.5、已知(m-1)+3x-5=0是一元二次方程,則m=________.6、已知關(guān)于x的一元二次方程的一個根比另一個根大2,則m的值為_____.7、如圖,△ABC與△是位似圖形,點是位似中心,若,,則=________.8、如圖所示,在中,,,.(1)如圖1,四邊形為的內(nèi)接正方形,則正方形的邊長為_________;(2)如圖2,若內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于,則正方形的邊長為_________.四、解答題(6小題,每小題10分,共計60分)1、如圖,在△ABC中,AB=AC,點P在BC上.(1)求作:△PCD,使點D在AC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)在(1)的條件下,若∠APC=2∠ABC,求證:PD//AB.2、已知關(guān)于x的一元二次方程.(1)求證:不論m取何值,方程總有兩個不相等的實數(shù)根;(2)若方程有兩個實數(shù)根為,,且,求m的值.3、關(guān)于x的方程有實數(shù)根,且m為正整數(shù),求m的值及此時方程的根.4、如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.(1)如圖①,當(dāng)時,求的值;(2)如圖②,當(dāng)點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=BG.

5、在等邊三角形中,,D為的中點.連接,E,F(xiàn)分別為,的中點,將繞點C逆時針旋轉(zhuǎn),記旋轉(zhuǎn)角為,直線和直線交于點G.(1)如圖1,線段和線段的數(shù)量關(guān)系是________________,直線與直線相交所成的較小角的度數(shù)是________________.(2)將圖1中的繞點C逆時針旋轉(zhuǎn)到圖2所示位置時,判斷(1)中的結(jié)論是否仍然成立?若成立,請僅就圖2的情形給出證明;若不成立,請說明理由.(3)在(2)的條件下,當(dāng)以點C,F(xiàn),E,G為頂點的四邊形是矩形時,請直接寫出的長.6、如圖所示,直線y=x+2與坐標(biāo)軸交于A、B兩點,與反比例函數(shù)y=(x>0)交于點C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點,若CD=CE,求點D坐標(biāo).-參考答案-一、單選題1、D【解析】【分析】根據(jù)空白區(qū)域的面積矩形空地的面積可得.【詳解】設(shè)花帶的寬度為,則可列方程為,故選D.【考點】本題主要考查由實際問題抽象出一元二次方程,解題的關(guān)鍵是根據(jù)圖形得出面積的相等關(guān)系.2、C【解析】【分析】比例尺=圖上距離:實際距離,根據(jù)題意可直接求得比例尺.【詳解】∵10km=1000000cm,∴比例尺為10:1000000=1:100000.故選C.【考點】掌握比例尺的計算方法,注意在求比的過程中,單位要統(tǒng)一.比例尺=圖上距離:實際距離,圖上距離在前,實際距離在后.3、D【解析】【分析】按照配方法的步驟,移項,配方,配一次項系數(shù)一半的平方.【詳解】∵x2?2x?m=0,∴x2?2x=m,∴x2?2x+1=m+1,∴(x?1)2=m+1.故選D.【考點】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準(zhǔn)確使用.4、D【解析】【分析】過點E作EF⊥x軸于點F,由直角三角形的性質(zhì)求出EF長和OF長即可.【詳解】解:過點E作EF⊥x軸于點F,∵四邊形OABC為菱形,∠AOC=60°,∴∠AOE=∠AOC=30°,OB⊥AC,∠FAE=60°,∴∠AEF=30°∵A(8,0),∴AO=8,∴AE=AO=×8=4,∴AF=AE=2,,∴OF=AO?AF=8?2=6,∴.故選:D【考點】本題考查了菱形的性質(zhì)、勾股定理及含30°直角三角形的性質(zhì),正確作出輔助線是解題的關(guān)鍵.5、A【解析】【分析】通過根與系數(shù)之間的關(guān)系得到,,由可求出m的值,通過方程有實數(shù)根可得到,從而得到m的取值范圍,確定m的值.【詳解】解:∵方程有兩個實數(shù)根,,∴,,∵,∴,整理得,,解得,,,若使有實數(shù)根,則,解得,,所以,故選:A.【考點】本題考查了一元二次方程根與系數(shù)之間的關(guān)系和跟的判別式,注意使一元二次方程有實數(shù)根的條件是解題的關(guān)鍵.6、D【解析】【分析】由圖2,可知BP=6,S△ABP=12,由圖1翻折可知,AQ⊥BP,進(jìn)而得出AQ=4,由勾股定理,可知BC=AB=5,菱形ABCD的面積為BC×AQ即可求出.【詳解】解:由圖2,得BP=6,S△ABP=12∴AQ=4由翻折可知,AQ⊥BP由勾股定理,得BC=AB==5∴菱形ABCD的面積為BC×AQ=5×4=20故選:D【考點】本題是一道幾何變換綜合題,解決本題主要用到勾股定理,翻折的性質(zhì),根據(jù)函數(shù)圖象找出幾何圖形中的對應(yīng)關(guān)系是解決本題的關(guān)鍵.二、多選題1、ABD【解析】【分析】利用相似多邊形的對應(yīng)邊的比相等,對應(yīng)角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應(yīng)角是否相等,對應(yīng)邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應(yīng)角、對應(yīng)邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應(yīng)角都是90°,對應(yīng)邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應(yīng)邊的比相等,對應(yīng)角相等.兩個條件必須同時具備.2、ABCD【解析】【分析】由旋轉(zhuǎn)和等邊三角形性質(zhì)得到,,,可推導(dǎo)得到是等邊三角形,再由等邊三角形性質(zhì)判斷A、D是否正確;根據(jù)菱形的判定得到四邊形是菱形,從而判斷C是否正確,結(jié)合前兩問可推導(dǎo)得到四邊形是菱形,從而得到B是否正確【詳解】證明:∵將等邊繞點C順時針旋轉(zhuǎn)得到

∴,∴,∴∴是等邊三角形∴,∵∴四邊形是菱形又∵,且是等邊三角形∴∴四邊形是菱形∴綜上所述:選項A、B、C、D全部正確故選:ABCD【考點】本題考查等邊三角形的性質(zhì),菱形的判定和性質(zhì),根據(jù)相關(guān)定理內(nèi)容解題是切入點.3、BD【解析】【分析】直接利用方程根與系數(shù)的關(guān)系以及根的判別式分析求出即可.【詳解】解:當(dāng)a=0時,方程整理為解得,∴選項B正確;故選項A錯誤;當(dāng)時,方程是一元二次方程,∴∴此時的方程表兩個不相等的實數(shù)根,故選項C錯誤;若時,,∴當(dāng)時,方程有兩個負(fù)實數(shù)根∴選項D正確,故選:BD【考點】此題主要考查了一元二次方程根的判別式和根與系數(shù)的關(guān)系,正確把握相關(guān)知識是解題關(guān)鍵.4、ABD【解析】【分析】直接利用已知點求出一次函數(shù)與反比例函數(shù)的解析式進(jìn)而分別分析得出答案.【詳解】解:A、設(shè)反比例函數(shù)的解析式為,把(1,200)代入得,k=200,∴反比例函數(shù)的解析式為:,當(dāng)x=4時,y=50,∴4月份的利潤為50萬元,正確,符合題意;B、治污改造完成后,從4月到6月,利潤從50萬到110萬,故每月利潤比前一個月增加30萬元,正確,符合題意;C、當(dāng)y=100時,則,解得:x=2,則只有3月,4月,5月共3個月的利潤低于100萬元,不正確,不符合題意.D、設(shè)一次函數(shù)解析式為:y=kx+b,則,解得:,故一次函數(shù)解析式為:y=30x?70,故y=200時,200=30x?70,解得:x=9,則治污改造完成后的第5個月,即9月份該廠利潤達(dá)到200萬元,正確,符合題意.故選:ABD【考點】此題主要考查了一次函數(shù)與反比函數(shù)的應(yīng)用,正確得出函數(shù)解析式是解題關(guān)鍵.5、ABD【解析】【分析】先判斷三角形相似,再根據(jù)相似三角形的對應(yīng)邊成比例,則可判斷A、B、C的正確性,根據(jù)基本事實,一組平行線被兩條直線所截的對應(yīng)線段成比例,判斷D的正確性.【詳解】解:∵,∴∠A=∠D,∠B=∠C,∴,∴故A不正確;故B不正確;故C正確;∵,∴即故D不正確;故選:ABD.【考點】本題考查了相似三角形的判定和相似三角形的性質(zhì)以及基本事實的應(yīng)用,根據(jù)性質(zhì)找到對應(yīng)的邊成比例是解答此題的關(guān)鍵.6、ABC【解析】【分析】根據(jù)一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0).在一般形式中ax2叫二次項,bx叫一次項,c是常數(shù)項.其中a,b,c分別叫二次項系數(shù),一次項系數(shù),常數(shù)項.【詳解】解:A、化為一元二次方程的一般形式為:3x2-2x-5=0,一次項為-2x;B、化為一元二次方程的一般形式為:9x2-16x=0,一次項為-16x;C、化為一元二次方程的一般形式為:x2-7x=0;一次項為-7x;D、化為一元二次方程的一般形式為:x2-25=0,不含一次項.故選:ABC.【考點】本題考查了一元二次方程的一般形式,注意:找項和項的系數(shù)時,帶著前面的符號.三、填空題1、5【解析】【分析】根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為1:2,以及6×6網(wǎng)格圖形中,最長線段為6,進(jìn)行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網(wǎng)格圖形中,最長線段為6,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應(yīng)小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點】本題考查了作圖-應(yīng)用與設(shè)計、相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.2、2【解析】【分析】根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=3、x1x2=1,將其代入x1+x2﹣x1x2中即可求出結(jié)論.【詳解】解:∵方程x2﹣3x+1=0的兩個實數(shù)根為x1、x2,∴x1+x2=3、x1x2=1,∴x1+x2﹣x1x2=3﹣1=2,故答案為:2.【考點】本題考查了根與系數(shù)的關(guān)系,一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系為:x1+x2=﹣,x1?x2=.3、

【解析】【分析】(1)根據(jù)四邊形是正方形,得到從而得到再利用勾股定理求解即可得到答案;(2)如圖:連接,運用矩形的性質(zhì)和折疊的性質(zhì)求出的最小值,再設(shè),則,最后在中運用勾股定理解答即可【詳解】解:(1)如圖所示,∵四邊形是正方形∴∵∴∵四邊形ABCD是矩形∴,∠B=90°∴(2)如圖:連接,當(dāng)點在上時,有最小值.∵四邊形是矩形,,,∴,,∴.由折疊性質(zhì),得,,∴的最小值.設(shè),則.在中,,即,解得,∴的長為.故答案為:.【考點】本題主要考查矩形的性質(zhì)和折疊的性質(zhì),正方形的性質(zhì),勾股定理,根據(jù)矩形的性質(zhì)和折疊的性質(zhì)確定的最小值成為解答本題的關(guān)鍵.4、1【解析】【分析】設(shè)P、Q運動的時間是秒,根據(jù)已知條件得到cm,cm,則cm,根據(jù)三角形面積公式列出方程,解方程即可求解.【詳解】解:設(shè)P、Q運動的時間是秒,則cm,cm,cm∵△PQC的面積為3cm2,∴,即,解得或(不合題意,舍去),∴當(dāng)△PQC的面積為3cm2時,P、Q運動的時間是1秒.故答案為:1【考點】本題考查了一元二次方程應(yīng)用——動點問題,三角形的面積,正確的理解題意是解題的關(guān)鍵.5、-1【解析】【分析】根據(jù)一元二次方程的定義m-1≠0,且,解答即可.【詳解】∵(m-1)+3x-5=0是一元二次方程,∴m-1≠0,且,∴m-1≠0,且,∴,故答案為:-1.【考點】本題考查了一元二次方程的定義即含有一個未知數(shù)且含未知數(shù)項的次數(shù)最高是2的整式方程,熟練掌握定義是解題的關(guān)鍵.6、1【解析】【分析】利用因式分解法求出x1,x2,再根據(jù)根的關(guān)系即可求解.【詳解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案為:1.【考點】此題主要考查解一元二次方程,解題的關(guān)鍵是熟知因式分解法的運用.7、16【解析】【分析】題干已知△ABC與△是位似圖形,利用面積相似比進(jìn)行分析求解.【詳解】解:△ABC與△是位似圖形,得到,利用相似圖形,面積比即是對應(yīng)線段比的平方比得到,由,得到=16.【考點】本題考查位似圖形,利用相似圖形的面積比即是對應(yīng)線段比的平方比,從而分析求解.8、

【解析】【分析】(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質(zhì)即可求出正方形的邊長;(2)設(shè)正方形的邊長是x,則過點C作CN⊥AB,垂足為N,交GF于點M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點M,交AB于點N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設(shè)正方形邊長為x,則,解得:,∴正方形DEFG的邊長為;(2)如圖,過點C作CN⊥AB,垂足為N,交GF于點M,設(shè)小正方形的邊長為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長是.【考點】本題主要考查了正方形,矩形的性質(zhì)和相似三角形的性質(zhì).會利用三角形相似中的相似比來得到相關(guān)的線段之間的等量關(guān)系是解題的關(guān)鍵.四、解答題1、(1)見解析;(2)見解析【解析】【分析】(1)根據(jù)相似三角形的性質(zhì)可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD與AC的交點為D即可;(2)利用外角的性質(zhì)以及(1)中∠CPD=∠BAP可得∠CPD=∠ABC,再根據(jù)平行線的判定即可.【詳解】解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如圖,即為所作圖形,(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP=∠ABC,∴∠BAP=∠CPD=∠ABC,即∠CPD=∠ABC,∴PD∥AB.【考點】本題考查了尺規(guī)作圖,相似三角形的性質(zhì),外角的性質(zhì),難度不大,解題的關(guān)鍵是掌握尺規(guī)作圖的基本作法.2、(1)見詳解;(2)【解析】【分析】(1)根據(jù)一元二次方程根的判別式可直接進(jìn)行求解;(2)利用一元二次方程根與系數(shù)的關(guān)系可直接進(jìn)行求解.【詳解】(1)證明:∵,∴,∴,∵,∴,∴不論m取何值,方程總有兩個不相等的實數(shù)根;(2)解:∵,∴,∵方程有兩個實數(shù)根為,,∴,∵,∴,解得:.【考點】本題主要考查一元二次方程根的判別式及根與系數(shù)的關(guān)系,熟練掌握一元二次方程根的判別式及根與系數(shù)的關(guān)系是解題的關(guān)鍵.3、,此時方程的根為【解析】【分析】直接利用根的判別式≥0得出m的取值范圍進(jìn)而解方程得出答案.【詳解】解:∵關(guān)于x的方程x2-2x+2m-1=0有實數(shù)根,∴b2-4ac=4-4(2m-1)≥0,解得:m≤1,∵m為正整數(shù),∴m=1,∴此時二次方程為:x2-2x+1=0,則(x-1)2=0,解得:x1=x2=1.【考點】此題主要考查了根的判別式,正確得出m的值是解題關(guān)鍵.4、(1)=;(2)證明見解析.【解析】【分析】(1)根據(jù)正方形的性質(zhì)和相似三角形的判定定理,得△CEF∽△ADF,可得=,進(jìn)而即可得到結(jié)論;(2)由AD∥CB,點E是BC的中點,得△EFC∽△DFA.CF:AF=EC:AD,由FG//AB,得CG:BG=CF:AF,進(jìn)而即可得到結(jié)論.【詳解】(1)∵,∴=.∵四邊形ABCD是正方形,∴AD∥BC,AD=BC,∴△CEF∽△ADF,∴=,∴==,∴==;(2)∵AD∥CB,點E是BC的中點,∴△EFC∽△DFA.∴CF:AF=EC:AD=1:2,∵FG⊥BC,∴FG//AB,∴CG:BG=CF:AF=1:2,∴CG=BG.【考點】本題主要考查正方形的性質(zhì),相似三角形的判定和性質(zhì)定理以及平行線分線段成比例定理,掌握相似三角形的對應(yīng)邊成比例,是解題的關(guān)鍵.5、(1),;(2)結(jié)論仍然成立;證明見解析;(3)或.【解析】【分析】(1)先根據(jù)等邊三角形的性質(zhì)可得,再根據(jù)含角的直角三角形的性質(zhì)以及三角形中位線定理求解即可;(2)由(1)的結(jié)論以及旋轉(zhuǎn)的性質(zhì)證明,根據(jù)相似三角形的性質(zhì)即解答即可;(3)當(dāng)以點C、F、E、G為頂點的四邊形是矩形時,分兩種情況討論,根據(jù)矩形的性質(zhì)以及勾股定理求解即可.【詳解】解:(1)∵是等邊三角形,D為的中點.∴,∵E,F(xiàn)分別為,的中點,∴,∴,∴,∴,由圖1得:直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論