版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,矩形ABCD的對角線AC和BD相交于點O,若∠AOD=120°,AC=16,則AB的長為()A.16 B.12 C.8 D.42、如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于點E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.53、已知直線,點P在直線l上,點,點,若是直角三角形,則點P的個數(shù)有()A.1個 B.2個 C.3個 D.4個4、如圖,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分別是AB,AC的中點,連接DE,BE,點M在CB的延長線上,連接DM,若∠MDB=∠A,則四邊形DMBE的周長為()A.16 B.24 C.32 D.405、如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在直角墻角FOE中有張硬紙片正方形ABCD靠墻邊滑動,如圖所示,AD=2,A點沿墻往下滑動到O點的過程中,正方形的中心點M到O的最小值是______.2、如圖,在矩形ABCD中,對角線AC,BD相交于O,EF過點O分別交AB,CD于E,F(xiàn),已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_____cm2.3、能使平行四邊形ABCD為正方形的條件是___________(填上一個符合題目要求的條件即可).4、如圖,已知在矩形中,,,將沿對角線AC翻折,點B落在點E處,連接,則的長為_________.5、平面直角坐標(biāo)系中,四邊形ABCD的頂點坐標(biāo)分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知正方形中,點是邊延長線上一點,連接,過點作,垂足為點,與交于點.(1)求證:;(2)若,,求BG的長.2、在長方形紙片ABCD中,點E是邊CD上的一點,將△AED沿AE所在的直線折疊,使點D落在點F處.
(1)如圖1,若點F落在對角線AC上,且∠BAC=54°,則∠DAE的度數(shù)為________°.(2)如圖2,若點F落在邊BC上,且AB=CD=6,AD=BC=10,求CE的長.(3)如圖3,若點E是CD的中點,AF的延長線交BC于點G,且AB=CD=6,AD=BC=10,求CG的長.3、閱讀探究小明遇到這樣一個問題:在中,已知,,的長分別為,,,求的面積.小明是這樣解決問題的:如圖1所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(即的3個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出的面積.他把這種解決問題的方法稱為構(gòu)圖法,(1)圖1中的面積為________.實踐應(yīng)用參考小明解決問題的方法,回答下列問題:(2)圖2是一個的正方形網(wǎng)格(每個小正方形的邊長為1).①利用構(gòu)圖法在答題卡的圖2中畫出三邊長分別為,,的格點.②的面積為________(寫出計算過程).拓展延伸(3)如圖3,已知,以,為邊向外作正方形和正方形,連接.若,,,則六邊形的面積為________(在圖4中構(gòu)圖并填空).4、已知:如圖,在中,,,.求證:互相平分.如圖,將矩形紙片ABCD沿對角線AC折疊,使點B落在點E處,AE交CD于點F,且已知AB=8,BC=4(1)判斷△ACF的形狀,并說明理由;(2)求△ACF的面積;5、如圖1,在平面直角坐標(biāo)系中,且;(1)試說明是等腰三角形;(2)已知.寫出各點的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動點M從點B出發(fā)沿線段BA向點A運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當(dāng)其中一點到達終點時整個運動都停止.①若的一條邊與BC平行,求此時點M的坐標(biāo);②若點E是邊AC的中點,在點M運動的過程中,能否成為等腰三角形?若能,求出此時點M的坐標(biāo);若不能,請說明理由.-參考答案-一、單選題1、C【解析】【分析】由題意可得AO=BO=CO=DO=8,可證△ABO是等邊三角形,可得AB=8.【詳解】解:∵四邊形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等邊三角形,∴AB=AO=BO=8,故選:C.【點睛】本題考查了矩形的性質(zhì),等邊三角形的性質(zhì)和判定,熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.2、B【解析】【分析】利用折疊的性質(zhì)可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進而可得出AE=CE,根據(jù)矩形性質(zhì)可得AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質(zhì),∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據(jù)勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點睛】本題考查了翻折變換、矩形的性質(zhì)、勾股定理以及三角形的面積,利用勾股定理求出AE的長是解題的關(guān)鍵.3、C【解析】【分析】分別討論,,三種情況,求出點坐標(biāo)即可得出答案.【詳解】如圖,當(dāng)時,點與點橫坐標(biāo)相同,代入中得:,,當(dāng)時,點與點橫坐標(biāo)相同,,代入中得:,,當(dāng)時,取中點為點,過點作交于點,設(shè),,,,,,,,,在中,,解得:,,點有3個.故選:C.【點睛】本題考查直角三角形的性質(zhì)與平面直角坐標(biāo)系,掌握分類討論的思想是解題的關(guān)鍵.4、C【解析】【分析】由中點的定義可得AE=CE,AD=BD,根據(jù)三角形中位線的性質(zhì)可得DE//BC,DE=BC,根據(jù)平行線的性質(zhì)可得∠ADE=∠ABC=90°,利用ASA可證明△MBD≌△EDA,可得MD=AE,DE=MB,即可證明四邊形DMBE是平行四邊形,可得MD=BE,進而可得四邊形DMBE的周長為2DE+2MD=BC+AC,即可得答案.【詳解】∵D,E分別是AB,AC的中點,∴AE=CE,AD=BD,DE為△ABC的中位線,∴DE//BC,DE=BC,∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四邊形DMBE是平行四邊形,∴MD=BE,∵AC=18,BC=14,∴四邊形DMBE的周長=2DE+2MD=BC+AC=18+14=32.故選:C.【點睛】本題考查全等三角形的判定與性質(zhì)、三角形中位線的性質(zhì)及平行四邊形的判定與性質(zhì),三角形中位線平行于第三邊且等于第三邊的一半;有一組對邊平行且相等的四邊形是平行四邊形;熟練掌握相關(guān)性質(zhì)及判定定理是解題關(guān)鍵.5、B【解析】【分析】先證明四邊形BCED為平行四邊形,再根據(jù)矩形的判定進行解答.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE為矩形,故本選項不符合題意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四邊形DBCE不能為矩形,故本選項符合題意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE為矩形,故本選項不符合題意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE為矩形,故本選項不符合題意.故選:B.【點睛】本題考查了平行四邊形的判定和性質(zhì)、矩形的判定等知識,判定四邊形BCED為平行四邊形是解題的關(guān)鍵.二、填空題1、2【解析】【分析】取的中點為,連接,根據(jù)直角三角形的性質(zhì)求出OG和MG的長,然后根據(jù)兩點之間線段最短即可求解.【詳解】解:取的中點為,連接,為正方形,,,為中點,,又為直角三角形,,的軌跡是以為圓心的圓弧,最小值為當(dāng)三點共線時,即,故答案為:2.【點睛】本題考查了正方形的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,以及兩點之間線段最短等知識,正確作出輔助線是解答本題的關(guān)鍵.2、10【解析】【分析】利用矩形性質(zhì),求證,將陰影部分的面積轉(zhuǎn)為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉(zhuǎn)化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點睛】本題主要是考查了矩形的性質(zhì)以全等三角形的判定與性質(zhì)以及中線平分三角形面積,熟練利用矩形性質(zhì),證明三角形全等,將陰影部分面積轉(zhuǎn)化為其他圖形的面積,這是解決本題的關(guān)鍵.3、AC=BD且AC⊥BD(答案不唯一)【解析】【分析】根據(jù)正方形的判定定理,即可求解.【詳解】解:當(dāng)AC=BD時,平行四邊形ABCD為菱形,又由AC⊥BD,可得菱形ABCD為正方形,所以當(dāng)AC=BD且AC⊥BD時,平行四邊形ABCD為正方形.故答案為:AC=BD且AC⊥BD(答案不唯一)【點睛】本題主要考查了正方形的判定,熟練掌握正方形的判定定理是解題的關(guān)鍵.4、【解析】【分析】過點E作EF⊥AD于點F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過點E作EF⊥AD于點F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.5、菱形【解析】【分析】先在坐標(biāo)系中畫出四邊形ABCD,由A、B、C、D的坐標(biāo)即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點睛】本題主要考查了菱形的判定,坐標(biāo)與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.三、解答題1、(1)見解析;(2)【分析】(1)由正方形的性質(zhì)可得,,由的余角相等可得∠CBG=∠CDE,進而證明△BCG≌△DCE,從而證明CG=CE;(2)證明正方形的性質(zhì)可得,結(jié)合已知條件即可求得,進而勾股定理即可求得的長【詳解】(1)∵BF⊥DE∴∠BFE=90°∵四邊形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=∠CDE+∠E,∴∠CBG=∠CDE∴△BCG≌△DCE∴CG=CE(2)∵,且,,∴∵CG=CE∴,在中,【點睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,掌握三角形全等的性質(zhì)與判定與勾股定理是解題的關(guān)鍵.2、(1)18;(2)CE的長為;(3)CG的長為.【分析】(1)根據(jù)矩形的性質(zhì)得∠DAC=36°,根據(jù)折疊的性質(zhì)得∠DAE=18°;(2)根據(jù)矩形性質(zhì)得∠B=∠C=90°,BC=AD=10,CD=AB=6,根據(jù)折疊的性質(zhì)得AF=AD=10,EF=ED,根據(jù)勾股定理得BF=8,則CF=2,設(shè)CE=x,則EF=ED=6﹣x,根據(jù)勾股定理得,解得:,即CE的長為;(3)連接EG,,由題意得DE=CE,由折疊的性質(zhì)得:AF=AD=10,∠AFE=∠D=90°,F(xiàn)E=DE,則∠EFG=∠C=90°,由HL得Rt△CEG≌Rt△FEG,則CG=FG,設(shè)CG=FG=y(tǒng),則AG=10+y,BG=10﹣y,在Rt△ABG中,由勾股定理得,解得,即CG的長為.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠DAB=90°,∴∠DAC=90°-∠BAC=90°-54°=36°,∵△AED沿AE所在的直線折疊,使點D落在點F處,∴∠DAE=∠EAC=∠DAC=×36°=18°,故答案為:18;(2)∵四邊形ABCD是長方形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折疊的性質(zhì)得:AF=AD=10,EF=ED,∴,∴CF=BC﹣BF=10﹣8=2,設(shè)CE=x,則EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:,解得:,即CE的長為;(3)解:如圖所示,連接EG,∵點E是CD的中點,∴DE=CE,由折疊的性質(zhì)得:AF=AD=10,∠AFE=∠D=90°,F(xiàn)E=DE,∴∠EFG=∠C=90°,在Rt△CEG和Rt△FEG中,,∴Rt△CEG≌Rt△FEG(HL),∴CG=FG,設(shè)CG=FG=y(tǒng),則AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:,解得:,即CG的長為.【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是掌握并靈活運用這些知識點.3、(1);(2)①作圖見詳解;②8;(3)在網(wǎng)格中作圖見詳解;31.【分析】(1)根據(jù)網(wǎng)格可直接用割補法求解三角形的面積;(2)①利用勾股定理畫出三邊長分別為、、,然后依次連接即可;②根據(jù)①中圖形,可直接利用割補法進行求解三角形的面積;(3)根據(jù)題意在網(wǎng)格中畫出圖形,然后在網(wǎng)格中作出,,進而可得,得出,進而利用割補法在網(wǎng)格中求解六邊形的面積即可.【詳解】解:(1)△ABC的面積為:,故答案為:;(2)①作圖如下(答案不唯一):②的面積為:,故答案為:8;(3)在網(wǎng)格中作出,,在與中,,∴,∴,,六邊形AQRDEF的面積=正方形PQAF的面積+正方形PRDE的面積+的面積,故答案為:31.【點睛】本題主要考查勾股定理、正方形的性質(zhì)、割補法求解面積及二次根式的運算,熟練掌握勾股定理、正方形的性質(zhì)、割補法求解面積及二次根式的運算是解題的關(guān)鍵.4、證明見解析【分析】連接,由三角形中位線定理可得,,可證四邊形ADEF是平行四邊形,由平行四邊形的性質(zhì)可得AE,DF互相平分;【詳解】
證明:連接,∵AD=DB,BE=EC,∴,∵BE=EC,AF=FC,∴,∴四邊形ADEF是平行四邊形,∴AE,DF互相平分.【點睛】本題考查了平行四邊形的性質(zhì)判定和性質(zhì)及三角形中位線定理,靈活運用這些性質(zhì)是解題的關(guān)鍵.(1)△ACF是等腰三角形,理由見解析;(2)10;(3)5、(1)見解析;(2)12,0;-8,0;0,16;(3)①當(dāng)M的坐標(biāo)為(2,0)或(4,0)時,△OMN的一條邊與BC平行;②當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時,,△MOE是等腰
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026春招:揚子江藥業(yè)試題及答案
- 2026年橋梁工程技術(shù)交底與監(jiān)理要點
- 2026春招:信達資產(chǎn)筆試題及答案
- 2026年年會游戲模板素材
- 2026春招:濰柴動力面試題及答案
- 貨運公司交通安全課件
- 醫(yī)療行業(yè)市場分析指標(biāo)
- 醫(yī)療健康產(chǎn)業(yè)產(chǎn)業(yè)鏈分析
- 醫(yī)療設(shè)備智能化發(fā)展研究
- 貨品安全培訓(xùn)計劃課件
- 兒科健康評估與護理
- 四診合參在護理評估中的綜合應(yīng)用
- 2026年青海省交通控股集團有限公司招聘(45人)筆試考試參考題庫及答案解析
- GB 46768-2025有限空間作業(yè)安全技術(shù)規(guī)范
- 壓力變送器培訓(xùn)
- 體檢中心科主任述職報告
- 春之聲圓舞曲課件
- 酸銅鍍層晶體生長機制探討
- 2025年8月30日四川省事業(yè)單位選調(diào)面試真題及答案解析
- 油氣井帶壓作業(yè)安全操作流程手冊
- 認知障礙老人的護理課件
評論
0/150
提交評論