版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數學上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、點P是△ABC中AB邊上一點(不與A、B重合),過P作直線截△ABC使得截得的三角形與△ABC相似,這樣的直線最多作()A.2條 B.3條 C.4條 D.5條2、一元二次方程的解是(
)A., B., C. D.,3、若m,n是方程x2-x-2022=0的兩個根,則代數式(m2-2m-2022)(-n2+2n+2022)的值為(
)A.2023 B.2022 C.2021 D.20204、直角三角形的面積為,斜邊上的中線為,則這個三角形周長為(
)A. B.C. D.5、如圖,四邊形OABC是平行四邊形,點A的坐標為A(3,0),∠COA=60°,D為邊AB的中點,反比例函數y=(x>0)的圖象經過C,D兩點,直線CD與y軸相交于點E,則點E的坐標為(
)A.(0,2) B.(0,3) C.(0,5) D.(0,6)6、設方程的兩根分別是,則的值為(
)A.3 B. C. D.二、多選題(6小題,每小題2分,共計12分)1、下列四個命題中正確的命題有(
)A.兩個矩形一定相似 B.兩個菱形都有一個角是40°,那么這兩個菱形相似C.兩個正方形一定相似 D.有一個角相等的兩個等腰梯形相似2、若反比例函數y=的圖象在每一個象限內y的值隨x的增大而增大,則關于x的函數y=(1+m)x+m2+3的圖象經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、下列說法正確的是(
).A.對角線相等的菱形是正方形B.順次連接對角線互相垂直的四邊形的四邊中點,所得到的四邊形是菱形C.成軸對稱的兩個圖形全等D.有三個角相等的四邊形是矩形4、如圖,△ABC中,D在AB上,E在AC上,下列條件中,不能判定DE∥BC的是(
).A. B.C. D.5、下列關于位似圖形的說法中正確的是(
)A.相似圖形一定是位似圖形,位似圖形一定是相似圖形B.位似圖形一定有位似中心C.如果兩個圖形是相似圖形,且每組對應點的連線所在的直線都經過同一個點,那么這兩個圖形是位似圖形D.位似圖形上任意兩點與位似中心的距離之比等于位似比6、如圖,在正方形ABCD中,E是BC的中點,F(xiàn)是CD上一點,且,下列結論:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正確的為(
)A.① B.② C.③ D.④第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如果一個直角三角形斜邊上的中線與斜邊所成的銳角為角,那么這個直角三角形的較小的內角是________.2、如圖,在中,,點D是的中點,過點D作,垂足為點E,連接,若,,則________.3、如圖所示,在中,,,.(1)如圖1,四邊形為的內接正方形,則正方形的邊長為_________;(2)如圖2,若內有并排的n個全等的正方形,它們組成的矩形內接于,則正方形的邊長為_________.4、若正方形的對角線的長為4,則該正方形的面積為_________.5、小明的身高為1.6,他在陽光下的影長為2,此時他旁邊的旗桿的影長為15,則旗桿的高度為_______.6、如圖,點E、F分別是矩形ABCD邊BC和CD上的點,把△CEF沿直線EF折疊得到△GEF,再把△BEG沿直線BG折疊,點E的對應點H恰好落在對角線BD上,若此時F、G、H三點在同一條直線上,且線段HF與HD也恰好關于某條直線對稱,則的值為______.7、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長=_____.8、設分別為一元二次方程的兩個實數根,則____.四、解答題(6小題,每小題10分,共計60分)1、如圖是由一些棱長都為的小正方體組合成的簡單幾何體.(1)畫出該幾何體的主視圖、左視圖和俯視圖;(2)如果在這個幾何體上再添加一些小正方體,并保持主視圖和左視圖不變,最多可以再添加__________塊小正方體.2、水果批發(fā)市場有一種高檔水果,如果每千克盈利(毛利)10元,每天可售出600kg.經市場調查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷量將減少20kg.(1)若以每千克能盈利17元的單價出售,求每天的總毛利潤為多少元;(2)現(xiàn)市場要保證每天總毛利潤為7500元,同時又要使顧客得到實惠,求每千克應漲價多少元;(3)現(xiàn)需按毛利潤的10%繳納各種稅費,人工費每日按銷售量每千克支出1.5元,水電房租費每日300元.若每天剩下的總純利潤要達到6000元,求每千克應漲價多少元.3、如圖,四邊形ABCD是菱形,邊長為10cm,對角線AC,BD交于點O,∠BAD=60°.(1)求對角線AC,BD的長;(2)求菱形的面積.4、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.5、如圖,在?ABCD中,對角線AC與BD相交于點O,點E,F(xiàn)分別為OB,OD的中點,延長AE至點G,使EG=AE,連接CG.(1)求證:△ABE≌△CDF;(2)當AB與AC滿足什么數量關系時,四邊形EGCF是矩形?請說明理由.6、解一元二次方程(1)(2)-參考答案-一、單選題1、C【解析】【分析】根據相似三角形的判定方法分析,即可做出判斷.【詳解】滿足條件的直線有4條,如圖所示:如圖1,過P作PE∥AC,則有△BPE∽△BAC;如圖2,過P作PE∥BC,則有△APE∽△ABC;如圖3,過P作∠AEP=∠B,又∠A=∠A,則有△APE∽△ACB;如圖4,過P作∠BEP=∠A,又∠B=∠B,則有△BEP∽△BAC,故選:C.【考點】本題考查了相似三角形的判定,解答的關鍵是對相似三角形的判定方法的理解與靈活運用.2、B【解析】【分析】利用提公因式分進行因式分解,再解方程,即可得到答案.【詳解】解:x(5x-2)=0,x=0或5x-2=0,所以或.故選:B.【考點】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.3、B【解析】【詳解】解:∵m、n是方程x2-x-2022=0的兩個根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故選:B.【考點】本題考查了一元二次方程的解的定義和一元二次方程根與系數的關系,能根據已知條件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此題的關鍵.4、D【解析】【分析】根據直角三角形的性質求出斜邊長,根據勾股定理、完全平方公式計算即可.【詳解】解:設直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴∴這個三角形周長為:,故選D.【考點】本題考查的是勾股定理的應用,直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.5、B【解析】【分析】作CE⊥x軸于點E,過B作BF⊥x軸于F,過D作DM⊥x軸于M,設C的坐標為(x,x),表示出D的坐標,將C、D兩點坐標代入反比例函數的解析式,解關于x的方程求出x即可得到點C、D的坐標,進而求得直線CD的解析式,最后計算該直線與y軸交點坐標即可得出結果.【詳解】解:作CE⊥x軸于點E,則∠CEO=90°,過B作BF⊥x軸于F,過D作DM⊥x軸于M,則BF=CE,DM∥BF,BF=CE,∵D為AB的中點,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴設C的坐標為(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四邊形OABC是平行四邊形,A(3,0),∴OF=3+x,OM=3+x,即D點的坐標為(3+x,),把C、D的坐標代入y=得:k=x?x=(3+x)?,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),設直線CD解析式為:y=ax+b,則,解得,∴直線CD解析式為:,∴當x=0時,,∴點E的坐標為(0,).故選:B.【考點】本題主要考查了平行四邊形的性質、運用待定系數法求函數的解析式以及含度角的直角三角形的性質.根據反比例函數圖象經過C、D兩點,得出關于x的方程是解決問題的關鍵.6、A【解析】【分析】本題可利用韋達定理,求出該一元二次方程的二次項系數以及一次項系數的值,代入公式求解即可.【詳解】由可知,其二次項系數,一次項系數,由韋達定理:,故選:A.【考點】本題考查一元二次方程根與系數的關系,求解時可利用常規(guī)思路求解一元二次方程,也可以通過韋達定理提升解題效率.二、多選題1、BC【解析】【分析】根據兩個圖形相似的性質及判定方法,對應邊的比相等,對應角相等,兩個條件同時滿足來判斷正誤.【詳解】解:A兩個矩形對應角都是直角相等,對應邊不一定成比例,所以不一定相似,故本小題錯誤;B兩個菱形有一個角相等,則其它對應角也相等,對應邊成比例,所以一定相似,故本小題正確;C兩個正方形一定相似,正確;D有一個角相等的兩個等腰梯形,對應角一定相等,但對應邊的比不一定相等,故本小題錯誤.故選:BC.【考點】本題考查的是相似多邊形的判定及菱形,矩形,正方形,等腰梯形的性質及其定義.2、ABD【解析】【分析】先根據反比例函數y=的圖象在每一個象限內,y隨x的增大而增大可得出關于m的不等式,求出m的取值范圍,然后推知函數y=(1+m)x+m2+3的圖象所經過的象限.【詳解】反比例函數y=的圖象在每一個象限內y的值隨x值的增大而增大,m+2<0,m<-2,1+m<-1,m2+3>7,函數y=(1+m)x+m2+3的圖象經過第一、二、四象限,故選:ABD.【考點】本題考查了反比例函數的性質,一次函數的性質,反比例函數的圖象,熟悉函數圖象與系數的關系是解題的關鍵.3、AC【解析】【分析】根據正方形,矩形的判定,成軸對稱圖形的關系,對各選項進行判斷即可;【詳解】解:對角線相等的菱形是正方形,正確,符合題意;B順次連接對角線互相垂直的四邊形的四邊中點,所得到的四邊形是矩形,故原命題錯誤,不符合題意;C成軸對稱的兩個圖形全等,正確,符合題意;D有四個角相等的四邊形是矩形,錯誤,不符合題意.故答案為:A、C.【考點】本題考查了正方形,矩形的判定,成軸對稱圖形的關系.解題的關鍵在于對知識的靈活運用.4、BCD【解析】【分析】利用各選項給定的條件,結合再證明,可得,逐一分析各選項,從而可得答案.【詳解】解:A、而則故A不符合題意;B、與不一定相似,則與不一定相等,不一定平行,故B符合題意;C、,而而不一定相等,故不一定平行,故C符合題意;D、與不一定相似,則與不一定相等,不一定平行,故D符合題意;故選:BCD.【考點】本題考查的是相似三角形的判定與性質,平行線的判定,掌握兩邊對應成比例且夾角相等的兩個三角形相似是解題的關鍵.5、B【解析】【分析】根據位似圖形的性質解答.【詳解】解:A、位似圖形一定是相似圖形,相似圖形不一定是位似圖形,故該選項錯誤;B、位似圖形一定有位似中心,故該項正確;C、如果兩個圖形是相似圖形,且每組對應點的連線所在的直線都經過同一個點,且對應邊平行,那么這兩個圖形是位似圖形,故該項錯誤;D、位似圖形上對應點與位似中心的距離之比等于位似比,故該項錯誤;故選:B.【考點】此題考查位似圖形的性質:位似圖形對應點與位似中心的連線的比等于位似比,兩個位似圖形一定是相似圖形,熟記性質是解題的關鍵.6、BC【解析】【分析】根據相似三角形的定義,已知條件判定相似的三角形,再利用相似三角形的性質逐一判斷選項即可.【詳解】解:在正方形中,是的中點,是上一點,且,,..,.,,,..,.②③正確.故選:BC.【考點】本題考查了相似三角形的判定與性質,解題的關鍵是掌握判定定理有①有兩個對應角相等的三角形相似,②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.三、填空題1、25【解析】【分析】由直角三角形斜邊上的中線等于斜邊的一半的性質,證明得到,再利用外角性質求出,再得到,從而得解.【詳解】如圖所示,∵是斜邊上的中線,∴,∴,∵斜邊上的中線與斜邊所成的銳角為,即,∴,解得:,另一個銳角,∴這個直角三角形的較小內角是.故答案為:.【考點】本題考查了直角三角形的性質和外角的性質,比較基礎.2、3【解析】【分析】根據直角三角形的性質得到AB=10,利用勾股定理求出AC,再說明DE∥AC,得到,即可求出DE.【詳解】解:∵∠ACB=90°,點D為AB中點,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案為:3.【考點】本題考查了直角三角形的性質,勾股定理,平行線分線段成比例,解題的關鍵是通過平行得到比例式.3、
【解析】【分析】(1)根據題意畫出圖形,作CN⊥AB,再根據GF∥AB,可知△CGF∽△CAB,由相似三角形的性質即可求出正方形的邊長;(2)設正方形的邊長是x,則過點C作CN⊥AB,垂足為N,交GF于點M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點M,交AB于點N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設正方形邊長為x,則,解得:,∴正方形DEFG的邊長為;(2)如圖,過點C作CN⊥AB,垂足為N,交GF于點M,設小正方形的邊長為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長是.【考點】本題主要考查了正方形,矩形的性質和相似三角形的性質.會利用三角形相似中的相似比來得到相關的線段之間的等量關系是解題的關鍵.4、8【解析】【分析】根據正方形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:∵正方形的一條對角線的長為4,∴這個正方形的面積=×42=8.故答案為:8.【考點】本題考查了正方形的性質,熟練掌握正方形的面積的兩種求法是解題的關鍵.5、12【解析】【分析】設這根旗桿的高度為xm,利用某一時刻物體的高度與它的影長的比相等得到,然后利用比例性質求x即可.【詳解】設這根旗桿的高度為xm,根據題意得解得x=12(m),即這根旗桿的高度為12m.故答案為12.【考點】本題考查了相似三角形的應用:利用影長測量物體的高度;利用相似測量河的寬度(測量距離);借助標桿或直尺測量物體的高度.6、【解析】【分析】根據線段HF與HD也恰好關于某條直線對稱,可得HF=HD,由折疊和同角的余角相等得,然后證明,再利用設元法即可解決問題.【詳解】解:∵線段HF與HD也恰好關于某條直線對稱,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折疊可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等邊三角形,∴∠CBD=∠CEF=30°,∴,設GF=CF=x,HF=DF=y,則HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考點】本題主要考查折疊的性質、軸對稱的性質、相似三角形的判定與性質.解決本題的關鍵是掌握翻折的性質.7、【解析】【分析】先由角平分線的定義及平行線的性質求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據相似三角形的性質列出比例式,求得DE的長,即為EC的長.【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點】本題考查了角平分線的定義、平行線的性質、等腰三角形的判定及相似三角形的判定與性質,熟練掌握相關性質與定理是解題的關鍵.8、2020【解析】【分析】根據一元二次方程的解結合根與系數的關系即可得出m2+2m=2022,m+n=?2,將其代入m2+3m+n=m2+2m+(m+n)中即可求出結論.【詳解】解:∵m,n分別為一元二次方程x2+2x?2022=0的兩個實數根,∴m2+2m=2022,m+n=?2,∴m2+3m+n=m2+2m+(m+n)=2022+(?2)=2020.故答案為:2020.【考點】本題考查了根與系數的關系以及一元二次方程的解,根據一元二次方程的解結合根與系數的關系得出m2+2m=2022,m+n=?2是解題的關鍵.四、解答題1、(1)見解析;(2)6.【解析】【分析】(1)由題意根據簡單組合體三視圖的畫法畫出相應的圖形即可;(2)根據題意在俯視圖上相應位置備注出相應擺放的數目即可.【詳解】解:(1)該幾何體的主視圖、左視圖和俯視圖如下:(2)在備注數字的位置加擺相應數量的小正方體,所以最多可以添加6塊小正方體.故答案為:6.【考點】本題考查簡單組合體的三視圖,理解視圖的意義是正確解答的前提.注意掌握在畫圖時一定要將物體的邊緣、棱、頂點都體現(xiàn)出來,看得見的輪廓線都畫成實線,看不見的畫成虛線,不能漏掉.2、(1)每天的總毛利潤為7820元;(2)每千克應漲價5元;(3)每千克應漲價15元或元【解析】【分析】(1)設每千克盈利x元,可售y千克,由此求得關于y與x的函數解析式,進一步代入求得答案即可;(2)利用每千克的盈利×銷售的千克數=總利潤,列出方程解答即可;(3)利用每天總毛利潤﹣稅費﹣人工費﹣水電房租費=每天總純利潤,列出方程解答即可.(1)解:設每千克盈利x元,可售y千克,設y=kx+b,則當x=10時,y=600,當x=11時,y=600﹣20=580,由題意得,,解得.所以銷量y與盈利x元之間的關系為y=﹣20x+800,當x=17時,y=460,則每天的毛利潤為17×460=7820元;(2)解:設每千克盈利x元,由(1)可得銷量為(﹣20x+800)千克,由題意得x(﹣20x+800)=7500,解得:x1=25,x2=15,∵要使得顧客得到實惠,應選x=15,∴每千克應漲價15﹣10=5元;(3)解:設每千克盈利x元,由題意得x(﹣20x+800)﹣10%x(﹣20x+800)﹣1.5(﹣20x+800)﹣300=6000,解得:x1=25,x2,則每千克應漲價25﹣10=15元或10元.【考點】此題主要一元二次方程的實際運用,找出題目蘊含的數量關系,理解銷售問題中的基本關系是解決問題的關鍵.3、(1)BD=10cm,AC=cm(2)菱形的面積為cm2【解析】【分析】(1)利用已知條件易求BD的長,再由勾股定理可求出AO的長,進而可求對角線AC的長;(2)利用菱形的面積等于其對角線積的一半,即可求得面積.(1)解:在菱形ABCD中,AB=AD=10cm,∠BAD=60°,∴△ABD是等邊三角形,∴BD=10cm.由菱形的性質知AC⊥BD,BO=DO,OA=OC,∴BO=BD=5cm,在Rt△AOB中,AO==cm,∴AC=2AO=(cm).(2)解:菱形的面積為×10×=(cm2).【考點】本題主要考查的是菱形的性質:菱形的四條邊都相等,對角線互相垂直平分,還考查了勾股定理的應用.4、.【解析】【分析】先根據可判斷出,再根據相似三角形的對應邊成比例列出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西職業(yè)技術學院《無機化學與化學分析1》2023-2024學年第二學期期末試卷
- 四川電力職業(yè)技術學院《工程管理與法規(guī)》2023-2024學年第二學期期末試卷
- 廣東財貿職業(yè)學院《現(xiàn)代質量管理》2023-2024學年第二學期期末試卷
- 太原旅游職業(yè)學院《理解當代中國英語讀寫》2023-2024學年第二學期期末試卷
- 珠海藝術職業(yè)學院《媒介批評》2023-2024學年第二學期期末試卷
- 江蘇航空職業(yè)技術學院《客運交通系統(tǒng)》2023-2024學年第二學期期末試卷
- 伊犁師范大學《江西景點知識與講解》2023-2024學年第二學期期末試卷
- 福州理工學院《素描與色彩》2023-2024學年第二學期期末試卷
- 2025廣東公需課《新質生產力與現(xiàn)代化產業(yè)體系》考試試題及答案
- 內墻涂料施工技術交底
- 《筑牢安全防線 歡度平安寒假》2026年寒假安全教育主題班會課件
- 2026國家國防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫及答案詳解(新)
- 信息技術應用創(chuàng)新軟件適配測評技術規(guī)范
- 2026版安全隱患排查治理
- 道路施工安全管理課件
- 肉瘤的課件教學課件
- VTE患者并發(fā)癥預防與處理
- 車輛救援合同協(xié)議書
- 貴州省遵義市匯川區(qū)2024-2025學年八年級上學期12月期末數學試題
- UWB定位是什么協(xié)議書
- 第三終端藥品銷售技巧
評論
0/150
提交評論