長沙市中考數(shù)學(xué)-易錯易錯壓軸勾股定理選擇題專題練習(及答案)_第1頁
長沙市中考數(shù)學(xué)-易錯易錯壓軸勾股定理選擇題專題練習(及答案)_第2頁
長沙市中考數(shù)學(xué)-易錯易錯壓軸勾股定理選擇題專題練習(及答案)_第3頁
長沙市中考數(shù)學(xué)-易錯易錯壓軸勾股定理選擇題專題練習(及答案)_第4頁
長沙市中考數(shù)學(xué)-易錯易錯壓軸勾股定理選擇題專題練習(及答案)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長沙市中考數(shù)學(xué)易錯易錯壓軸選擇題精選:勾股定理選擇題專題練習(及答案)(2)一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.在中,是直線上一點,已知,,,,則的長為()A.4或14 B.10或14 C.14 D.102.在平面直角坐標系中,已知平行四邊形ABCD的點A(0,﹣2)、點B(3m,4m+1)(m≠﹣1),點C(6,2),則對角線BD的最小值是()A.3 B.2 C.5 D.63.我國古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a=3,b=4,則該矩形的面積為(

)A.20 B.24 C. D.4.如圖,OP=1,過點P作PP1⊥OP,且PP1=1,得OP1=;再過點P1作P1P2⊥OP1且P1P2=1,得OP2=;又過點P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法繼續(xù)作下去,得OP2018的值為()A. B. C. D.5.如圖,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結(jié)DH、BE與相交于點G,以下結(jié)論中正確的結(jié)論有()(1)△ABC是等腰三角形;(2)BF=AC;(3)BH:BD:BC=1::;(4)GE2+CE2=BG2.A.1個 B.2個 C.3個 D.4個6.如圖,正方形ABCD的邊長為8,M在DC上,且DM=2,N是AC上的一動點,則DN+MN的最小值是()A.8 B.9 C.10 D.127.如圖,在四邊形ABCD中,∠DAB=30°,點E為AB的中點,DE⊥AB,交AB于點E,DE=,BC=1,CD=,則CE的長是()A. B. C. D.8.如圖,已知圓柱的底面直徑,高,小蟲在圓柱側(cè)面爬行,從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為()A.18 B.48 C.120 D.729.如圖,已知1號、4號兩個正方形的面積之和為7,2號、3號兩個正方形的面積之和為4,則a、b、c三個正方形的面積之和為()A.11 B.15 C.10 D.2210.如圖,在△ABC中,∠C=90°,AD是△ABC的一條角平分線.若AC=6,AB=10,則點D到AB邊的距離為()A.2 B.2.5 C.3 D.411.如圖,在中,cm,cm,點D、E分別在AC、BC上,現(xiàn)將沿DE翻折,使點C落在點處,連接,則長度的最小值()A.不存在 B.等于1cmC.等于2cm D.等于2.5cm12.如圖,在等邊△ABC中,AB=15,BD=6,BE=3,點P從點E出發(fā)沿EA方向運動,連結(jié)PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當點P從點E運動到點A時,點F運動的路徑長是()A.8 B.10 C. D.1213.已知,如圖,,點分別是的角平分線,邊上的兩個動點,,,則的最小值是()A.3 B. C.4 D.14.若直角三角形的三邊長分別為、a、,且a、b都是正整數(shù),則三角形其中一邊的長可能為()A.22 B.32 C.62 D.8215.如圖,在RtΔABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分線,若點P,Q分別是AD和AC上的動點,則PC+PQ的最小值是()A. B. C.12 D.1516.如圖:在△ABC中,∠B=45°,D是AB邊上一點,連接CD,過A作AF⊥CD交CD于G,交BC于點F.已知AC=CD,CG=3,DG=1,則下列結(jié)論正確的是()①∠ACD=2∠FAB②③④AC=AFA.①②③ B.①②③④ C.②③④ D.①③④17.在中,邊上的中線,則的面積為()A.6 B.7 C.8 D.918.如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為2,l2,l3之間的距離為3,則AC的長是()A. B. C.4 D.719.為了慶祝國慶,八年級(1)班的同學(xué)做了許多拉花裝飾教室,小玲抬來一架2.5米長的梯子,準備將梯子架到2.4米高的墻上,則梯腳與墻角的距離是()A.0.6米 B.0.7米 C.0.8米 D.0.9米20.已知一個直角三角形的兩邊長分別為3和5,則第三邊長是()A.5 B.4 C. D.4或21.如圖,在中,,,邊上的中線,請試著判定的形狀是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.以上都不對22.如圖,直角三角形兩直角邊的長分別為3和4,以直角三角形的兩直邊為直徑作半圓,則陰影部分的面積是(

)A.6 B. C.2π D.1223.以下列各組數(shù)為邊長,能構(gòu)成直角三角形的是A. B.、、C.、、 D.、、24.已知直角三角形的兩條邊長分別是3和5,那么這個三角形的第三條邊的長()A.4 B.16 C. D.4或25.如圖,分別以直角三邊為邊向外作三個正方形,其面積分別用表示,若,,那么()A.9 B.5 C.53 D.4526.如圖,在四邊形ABCD中,,,,,分別以點A,C為圓心,大于長為半徑作弧,兩弧交于點E,作射線BE交AD于點F,交AC于點O.若點O是AC的中點,則CD的長為()A. B.6 C. D.827.如圖,在△ABC中,∠ACB=90°,AB的中垂線交AC于D,P是BD的中點,若BC=4,AC=8,則S△PBC為()A.3 B.3.3 C.4 D.4.528.下列各組數(shù)據(jù),是三角形的三邊長能構(gòu)成直角三角形的是()A. B. C. D.29.已知三組數(shù)據(jù):①2,3,4;②3,4,5;③1,2,,分別以每組數(shù)據(jù)中的三個數(shù)為三角形的三邊長,能構(gòu)成直角三角形的是()A.② B.①② C.①③ D.②③30.A、B、C分別表示三個村莊,米,米,米,某社區(qū)擬建一個文化活動中心,要求這三個村莊到活動中心的距離相等,則活動中心P的位置應(yīng)在()A.AB的中點 B.BC的中點C.AC的中點 D.的平分線與AB的交點【參考答案】***試卷處理標記,請不要刪除一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.A解析:A【分析】根據(jù)AC=13,AD=12,CD=5,可判斷出△ADC是直角三角形,在Rt△ADB中求出BD,繼而可得出BC的長度.【詳解】∵AC=13,AD=12,CD=5,∴,∴△ABD是直角三角形,AD⊥BC,由于點D在直線BC上,分兩種情況討論:當點D在線段BC上時,如圖所示,在Rt△ADB中,,則;②當點D在BC延長線上時,如圖所示,在Rt△ADB中,,則.故答案為:A.【點睛】本題考查勾股定理和逆定理,需要分類討論,掌握勾股定理和逆定理的應(yīng)用為解題關(guān)鍵.2.D解析:D【分析】先根據(jù)B(3m,4m+1),可知B在直線y=x+1上,所以當BD⊥直線y=x+1時,BD最小,找一等量關(guān)系列關(guān)于m的方程,作輔助線:過B作BH⊥x軸于H,則BH=4m+1,利用三角形相似得BH2=EH?FH,列等式求m的值,得BD的長即可.【詳解】解:如圖,∵點B(3m,4m+1),∴令,∴y=x+1,∴B在直線y=x+1上,∴當BD⊥直線y=x+1時,BD最小,過B作BH⊥x軸于H,則BH=4m+1,∵BE在直線y=x+1上,且點E在x軸上,∴E(?,0),G(0,1)∵F是AC的中點∵A(0,?2),點C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH?FH,∴(4m+1)2=(3m+)(3?3m)解得:m1=?(舍),m2=,∴B(,),∴BD=2BF=2×=6,則對角線BD的最小值是6;故選:D.【點睛】本題考查了平行四邊形的性質(zhì),利用待定系數(shù)法求一次函數(shù)的解析式,三角形相似的判定,圓形與坐標特點,勾股定理等知識點.本題利用點B的坐標確定其所在的直線的解析式是關(guān)鍵.3.B解析:B【分析】設(shè)小正方形的邊長為x,則矩形的一邊長為(a+x),另一邊為(b+x),根據(jù)矩形的面積的即等于兩個三角形的面積之和,也等于長乘以寬,列出方程,化簡再代入a,b的值,得出x2+7x=12,再根據(jù)矩形的面積公式,整體代入即可.【詳解】設(shè)小正方形的邊長為x,則矩形的一邊長為(a+x),另一邊為(b+x),根據(jù)題意得:2(ax+x2+bx)=(a+x)(b+x),化簡得:ax+x2+bx-ab=0,又∵a=3,b=4,∴x2+7x=12;∴該矩形的面積為=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.故答案為B.【點睛】本題考查了勾股定理的證明以及運用和一元二次方程的運用,求出小正方形的邊長是解題的關(guān)鍵.4.D解析:D【解析】【分析】由勾股定理求出各邊,再觀察結(jié)果的規(guī)律.【詳解】∵OP=1,OP1=OP2=,OP3==2,∴OP4=,…,OP2018=.故選D【點睛】本題考查了勾股定理,讀懂題目信息,理解定理并觀察出被開方數(shù)比相應(yīng)的序數(shù)大1是解題的關(guān)鍵.5.C解析:C【分析】(1)根據(jù)角平分線的定義可得∠ABE=∠CBE,根據(jù)等角的余角相等求出∠A=∠BCA,再根據(jù)等角對等邊可得AB=BC,從而得證;(2)根據(jù)三角形的內(nèi)角和定理求出∠A=∠DFB,推出BD=DC,根據(jù)AAS證出△BDF≌△CDA即可;(3)根據(jù)等腰直角三角形斜邊上的中線等于斜邊的一半進行解答;(4)由(2)得出BF=AC,再由BF平分∠DBC和BE⊥AC通過ASA證得△ABE≌△CBE,即得CE=AE=AC,連接CG,由H是BC邊的中點和等腰直角三角形△DBC得出BG=CG,再由直角△CEG得出CG2=CE2+GE2,從而得出CE,GE,BG的關(guān)系.【詳解】解:(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵CD⊥AB,∴∠ABE+∠A=90°,∠CBE+∠ACB=90°,∴∠A=∠BCA,∴AB=BC,∴△ABC是等腰三角形;故(1)正確;(2)∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∴△BDF≌△CDA(AAS),∴BF=AC;故(2)正確;(3)∵在△BCD中,∠CDB=90°,∠DBC=45°,∴∠DCB=45°,∴BD=CD,BC=BD.由點H是BC的中點,∴DH=BH=CH=BC,∴BD=BH,∴BH:BD:BC=BH:BH:2BH=1::2.故(3)錯誤;(4)由(2)知:BF=AC,∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE⊥AC,∴∠AEB=∠CEB,在△ABE與△CBE中,,∴△ABE≌△CBE(AAS),∴CE=AE=AC,∴CE=AC=BF;連接CG.∵BD=CD,H是BC邊的中點,∴DH是BC的中垂線,∴BG=CG,在Rt△CGE中有:CG2=CE2+GE2,∴CE2+GE2=BG2.故(4)正確.綜上所述,正確的結(jié)論由3個.故選C.【點睛】本題考查全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),平行線的性質(zhì),勾股定理,熟練掌握三角形全等的判定方法并作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.6.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.【詳解】解:∵正方形是軸對稱圖形,點B與點D是關(guān)于直線AC為對稱軸的對稱點,∴連接BN,BD,則直線AC即為BD的垂直平分線,∴BN=ND∴DN+MN=BN+MN連接BM交AC于點P,∵點N為AC上的動點,由三角形兩邊和大于第三邊,知當點N運動到點P時,BN+MN=BP+PM=BM,BN+MN的最小值為BM的長度,∵四邊形ABCD為正方形,∴BC=CD=8,CM=8?2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故選:C.【點睛】此題考查正方形的性質(zhì)和軸對稱及勾股定理等知識的綜合應(yīng)用,解題的難點在于確定滿足條件的點N的位置:利用軸對稱的方法.然后熟練運用勾股定理.7.D解析:D【解析】【分析】連接BD,作CF⊥AB于F,由線段垂直平分線的性質(zhì)得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性質(zhì)得出BD=AD=2DE=,AE=BE=DE=3,證出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出結(jié)果.【詳解】解:連接BD,作CF⊥AB于F,如圖所示:則∠BFC=90°,∵點E為AB的中點,DE⊥AB,∴BD=AD,AE=BE,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=,AE=BE=DE=3,∵BC2+BD2=12+(2)2=13=CD2,∴△BCD是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=BC=,CF=BF=,∴EF=BE+BF=,在Rt△CEF中,由勾股定理得:CE=;故選D.【點睛】本題考查了勾股定理、勾股定理的逆定理、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì);熟練掌握勾股定理和逆定理是解題的關(guān)鍵.8.D解析:D【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點,的最短距離為線段的長.∵已知圓柱的底面直徑,∴,在中,,,∴,∴從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為.故選D.【點睛】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會將圓柱的側(cè)面展開,并利用勾股定理解答.9.B解析:B【分析】由直角三角形的勾股定理以及正方形的面積公式不難發(fā)現(xiàn):a的面積等于1號的面積加上2號的面積,b的面積等于2號的面積加上3號的面積,c的面積等于3號的面積加上4號的面積,據(jù)此可以求出三個的面積之和.【詳解】利用勾股定理可得:,,∴故選B【點睛】本題主要考查勾股定理的應(yīng)用,熟練掌握相關(guān)性質(zhì)定理是解題關(guān)鍵.10.C解析:C【分析】作DE⊥AB于E,由勾股定理計算出可求BC=8,再利用角平分線的性質(zhì)得到DE=DC,設(shè)DE=DC=x,利用等等面積法列方程、解方程即可解答.【詳解】解:作DE⊥AB于E,如圖,在Rt△ABC中,BC==8,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設(shè)DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=6(8﹣x),解得x=3,即點D到AB邊的距離為3.故答案為C.【點睛】本題考查了角平分線的性質(zhì)和勾股定理的相關(guān)知識,理解角的平分線上的點到角的兩邊的距離相等是解答本題的關(guān)鍵..11.C解析:C【分析】當C′落在AB上,點B與E重合時,AC'長度的值最小,根據(jù)勾股定理得到AB=5cm,由折疊的性質(zhì)知,BC′=BC=3cm,于是得到結(jié)論.【詳解】解:當C′落在AB上,點B與E重合時,AC'長度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折疊的性質(zhì)知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故選:C.【點睛】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.12.D解析:D【分析】首先利用等邊三角形的性質(zhì)和含30°直角三角形的運用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性質(zhì),得出點F運動的路徑長.【詳解】∵△ABC為等邊三角形,∴∠B=60°,過D點作DE′⊥AB,過點F作FH⊥BC于H,如圖所示:則BE′=BD=3,∴點E′與點E重合,∴∠BDE=30°,DE=BE=3,∵△DPF為等邊三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,,∴△DPE≌△FDH(AAS),∴FH=DE=3,∴點P從點E運動到點A時,點F運動的路徑為一條線段,此線段到BC的距離為3,當點P在E點時,作等邊三角形DEF1,∠BDF1=30°+60°=90°,則DF1⊥BC,當點P在A點時,作等邊三角形DAF2,作F2Q⊥BC于Q,則四邊形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,∵∠ADE+∠DAE=90°,∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴當點P從點E運動到點A時,點F運動的路徑長為12,故選:D.【點睛】此題主要考查等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題關(guān)鍵是作好輔助線.13.D解析:D【分析】先根據(jù)等腰三角形的性質(zhì)得出是線段垂直平分線,再根據(jù)垂直平分線的性質(zhì)、兩點之間線段最短得出最小值為,最后根據(jù)垂線段最短、直角三角形的性質(zhì)得出BE的最小值即可得.【詳解】如圖,作,交AC于點E,∵AD平分∠BAC,∴∠BAD=∠CAD,是線段垂直平分線(等腰三角形的三線合一)由兩點之間線段最短得:當點共線時,最小,最小值為點都是動點隨點的運動而變化由垂線段最短得:當時,取得最小值在中,即的最小值為故選:D.【點睛】本題考查了等腰三角形的性質(zhì)、垂直平分線的性質(zhì)、兩點之間線段最短等知識點,利用兩點之間線段最短和垂線段最短確認的最小值是解題關(guān)鍵.14.B解析:B【解析】由題可知(a-b)2+a2=(a+b)2,解得a=4b,所以直角三角形三邊分別為3b,4b,5b,當b=8時,4b=32,故選B.15.B解析:B【分析】過點D作DE⊥AB于點E,過點E作EQ⊥AC于點Q,EQ交AD于點P,連接CP,此時PC+PQ=EQ是最小值,根據(jù)勾股定理可求出AB的長度,再根據(jù)EQ⊥AC、∠ACB=90°即可得出EQ∥BC,進而可得出,代入數(shù)據(jù)即可得出EQ的長度,此題得解.【詳解】解:如圖所示,過點D作DE⊥AB于點E,過點E作EQ⊥AC于點Q,EQ交AD于點P,連接CP,此時PC+PQ=EQ是最小值,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,∴,∵AD是∠BAC的平分線,∴∠CAD=∠EAD,在△ACD和△AED中,,∴△ACD≌△AED(AAS),∴AE=AC=9.∵EQ⊥AC,∠ACB=90°,∴EQ∥BC,,∴,.故選B.【點睛】本題考查了勾股定理、軸對稱中的最短路線問題以及平行線的性質(zhì),找出點C的對稱點E,及通過點E找到點P、Q的位置是解題的關(guān)鍵.16.B解析:B【分析】過點C作于點H,根據(jù)等腰三角形的性質(zhì)得到,根據(jù)得到,可以證得①是正確的,利用勾股定理求出AG的長,算出三角形ACD的面積證明②是正確的,再根據(jù)角度之間的關(guān)系證明,得到④是正確的,最后利用勾股定理求出CF的長,得到③是正確的.【詳解】解:如圖,過點C作于點H,∵,∴,,∵,∴,∴,∴,故①正確;∵,,∴,∴,在中,,∴,故②正確;∵,,∴,∵,,∴,∵,,,∴,∴,故④正確;∴,在中,,故③正確.故選:B.【點睛】本題考查幾何的綜合證明,解題的關(guān)鍵是掌握等腰三角形的性質(zhì)和判定,勾股定理和三角形的外角和定理.17.B解析:B【分析】本題考查三角形的中線定義,根據(jù)條件先確定ABC為直角三角形,再根據(jù)勾股定理求得,最后根據(jù)求解即可.【詳解】解:如圖,在中,邊上的中線,∵CD=3,AB=6,∴CD=3,AB=6,∴CD=AD=DB,,,∵,∴,∴是直角三角形,∴,又∵,∴,∴,又∵,∴,故選B.【點睛】本題考查三角形中位線的應(yīng)用,熟練運用三角形的中線定義以及綜合分析、解答問題的能力,關(guān)鍵要懂得:在一個三角形中,如果獲知一條邊上的中線等于這一邊的一半,那么就可考慮它是一個直角三角形,通過等腰三角形的性質(zhì)和內(nèi)角和定理來證明一個三是直角三角形.18.A解析:A【解析】試題解析:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根據(jù)勾股定理,得BC=,在Rt△ABC中,根據(jù)勾股定理,得AC=.故選A.考點:1.勾股定理;2.全等三角形的性質(zhì);3.全等三角形的判定.19.B解析:B【解析】試題解析:依題意得:梯子、地面、墻剛好形成一直角三角形,梯高為斜邊,利用勾股定理得:梯腳與墻角距離:=0.7(米).故選B.20.D解析:D【詳解】解:∵一個直角三角形的兩邊長分別為3和5,∴①當5是此直角三角形的斜邊時,設(shè)另一直角邊為x,則由勾股定理得到:x==4;②當5是此直角三角形的直角邊時,設(shè)另一直角邊為x,則由勾股定理得到:x==故選:D21.C解析:C【分析】利用勾股定理的逆定理可以推導(dǎo)出是直角三角形.再利用勾股定理求出AC,可得出AB=AC,即可判斷.【詳解】解:由已知可得CD=BD=5,即,是直角三角形,,故是等腰三角形.故選C【點睛】本題考查了勾股定理和它的逆定理,熟練掌握定理是解題關(guān)鍵.22.A解析:A【分析】分別求出以AB、AC、BC為直徑的半圓及△ABC的面積,再根據(jù)S陰影=S1+S2+S△ABC-S3即可得出結(jié)論.【詳解】解:如圖所示:∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,∴以AB為直徑的半圓的面積S1=2π(cm2);以AC為直徑的半圓的面積S2=π(cm2);以BC為直徑的半圓的面積S3=π(cm2);S△ABC=6(cm2);∴S陰影=S1+S2+S△ABC-S3=6(cm2);故選A.【點睛】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.23.C解析:C【分析】利用勾股定理的逆定理依次計算各項后即可解答.【詳解】選項A,,不能構(gòu)成直角三角形;選項B,,不能構(gòu)成直角三角形;選項C,,能構(gòu)成直角三角形;選項D,,不能構(gòu)成直角三角形.故選C.【點睛】本題考查勾股定理的逆定理的應(yīng)用判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.24.D解析:D【解析】試題解析:當3和5都是直角邊時,第三邊長為:=;當5是斜邊長時,第三邊長為:=4.故選D.25.A解析:A【分析】根據(jù)勾股定理與正方形的性質(zhì)解答.【詳解】解:在Rt△ABC中,AB2=BC2+AC2,∵S1=AB2,S2=BC2,S3=AC2,∴S1=S2+S3.∵S2=7,S3=2,∴S1=7+2=9.故選:A.【點睛】本題考查了勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.26.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出AF=FC.再根據(jù)ASA證明△FOA≌△BOC,那么AF=BC=3,等量代換得到FC=AF=3,利用線段的和差關(guān)系求出FD=AD-AF=1.然后在直角△FDC中利用勾股定理求出CD的長.【詳解】解:如圖,連接FC,∵點O是AC的中點,由作法可知,OE垂直平分AC,∴AF=FC.∵AD∥BC,∴∠FAO=∠BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論