版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.如圖,在長(zhǎng)方形ABCD中,AB=8cm,BC=6cm,點(diǎn)E是CD邊上的一點(diǎn),且DE=2cm,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以2cm/s的速度沿A→B→C→E運(yùn)動(dòng),最終到達(dá)點(diǎn)E.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.(1)請(qǐng)以A點(diǎn)為原點(diǎn),AB所在直線為x軸,1cm為單位長(zhǎng)度,建立一個(gè)平面直角坐標(biāo)系,并用t表示出點(diǎn)P在不同線段上的坐標(biāo).(2)在(1)相同條件得到的結(jié)論下,是否存在P點(diǎn)使△APE的面積等于20cm2時(shí),若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.2.已知,.點(diǎn)在上,點(diǎn)在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出么的度數(shù).3.直線AB∥CD,點(diǎn)P為平面內(nèi)一點(diǎn),連接AP,CP.(1)如圖①,點(diǎn)P在直線AB,CD之間,當(dāng)∠BAP=60°,∠DCP=20°時(shí),求∠APC的度數(shù);(2)如圖②,點(diǎn)P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖③,點(diǎn)P在直線CD下方,當(dāng)∠BAK=∠BAP,∠DCK=∠DCP時(shí),寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說(shuō)明理由.4.問(wèn)題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度數(shù).小明的思路是:過(guò)P作PE∥AB,通過(guò)平行線性質(zhì),可得∠APC=∠APE+∠CPE=50°+60°=110°.問(wèn)題解決:(1)如圖2,AB∥CD,直線l分別與AB、CD交于點(diǎn)M、N,點(diǎn)P在直線I上運(yùn)動(dòng),當(dāng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí)(不與點(diǎn)M、N重合),∠PAB=α,∠PCD=β,判斷∠APC、α、β之間的數(shù)量關(guān)系并說(shuō)明理由;(2)在(1)的條件下,如果點(diǎn)P在線段MN或NM的延長(zhǎng)線上運(yùn)動(dòng)時(shí).請(qǐng)直接寫出∠APC、α、B之間的數(shù)量關(guān)系;(3)如圖3,AB∥CD,點(diǎn)P是AB、CD之間的一點(diǎn)(點(diǎn)P在點(diǎn)A、C右側(cè)),連接PA、PC,∠BAP和∠DCP的平分線交于點(diǎn)Q.若∠APC=116°,請(qǐng)結(jié)合(2)中的規(guī)律,求∠AQC的度數(shù).5.綜合與探究(問(wèn)題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(dòng)(1)如圖1,,點(diǎn)、分別為直線、上的一點(diǎn),點(diǎn)為平行線間一點(diǎn),請(qǐng)直接寫出、和之間的數(shù)量關(guān)系;(問(wèn)題遷移)(2)如圖2,射線與射線交于點(diǎn),直線,直線分別交、于點(diǎn)、,直線分別交、于點(diǎn)、,點(diǎn)在射線上運(yùn)動(dòng),①當(dāng)點(diǎn)在、(不與、重合)兩點(diǎn)之間運(yùn)動(dòng)時(shí),設(shè),.則,,之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.②若點(diǎn)不在線段上運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)都不重合),請(qǐng)你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關(guān)系.6.已知:直線AB∥CD,直線MN分別交AB、CD于點(diǎn)E、F,作射線EG平分∠BEF交CD于G,過(guò)點(diǎn)F作FH⊥MN交EG于H.(1)當(dāng)點(diǎn)H在線段EG上時(shí),如圖1①當(dāng)∠BEG=時(shí),則∠HFG=.②猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.(2)當(dāng)點(diǎn)H在線段EG的延長(zhǎng)線上時(shí),請(qǐng)先在圖2中補(bǔ)全圖形,猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.7.定義:如果,那么稱b為n的布谷數(shù),記為.例如:因?yàn)?,所以,因?yàn)?,所?(1)根據(jù)布谷數(shù)的定義填空:g(2)=________________,g(32)=___________________.(2)布谷數(shù)有如下運(yùn)算性質(zhì):若m,n為正整數(shù),則,.根據(jù)運(yùn)算性質(zhì)解答下列各題:①已知,求和的值;②已知.求和的值.8.先閱讀材料,再解答問(wèn)題:我國(guó)數(shù)學(xué)家華羅庚在一次出國(guó)訪問(wèn)途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根,華羅庚脫口而出,給出了答案,眾人十分驚訝,忙問(wèn)計(jì)算的奧妙,你知道華羅庚怎樣迅速而準(zhǔn)確地計(jì)算出結(jié)果嗎?請(qǐng)你按下面的步驟也試一試:(1)我們知道,,那么,請(qǐng)你猜想:59319的立方根是_______位數(shù)(2)在自然數(shù)1到9這九個(gè)數(shù)字中,________,________,________.猜想:59319的個(gè)位數(shù)字是9,則59319的立方根的個(gè)位數(shù)字是________.(3)如果劃去59319后面的三位“319”得到數(shù)59,而,,由此可確定59319的立方根的十位數(shù)字是________,因此59319的立方根是________.(4)現(xiàn)在換一個(gè)數(shù)103823,你能按這種方法得出它的立方根嗎?9.閱讀材料,解答問(wèn)題:如果一個(gè)四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個(gè)位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱這個(gè)四位數(shù)“依賴數(shù)”,例如,自然數(shù)2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依賴數(shù)”.(1)請(qǐng)直接寫出最小的四位依賴數(shù);(2)若四位依賴數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結(jié)果除以7余3,這樣的數(shù)叫做“特色數(shù)”,求所有特色數(shù).(3)已知一個(gè)大于1的正整數(shù)m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均為正整數(shù)),在m的所有表示結(jié)果中,當(dāng)nq﹣np取得最小時(shí),稱“m=pq+n4”是m的“最小分解”,此時(shí)規(guī)定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因?yàn)?×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色數(shù)”的F(m)的最大值.10.閱讀材料,回答問(wèn)題:(1)對(duì)于任意實(shí)數(shù)x,符號(hào)表示“不超過(guò)x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),就是x,當(dāng)x不是整數(shù)時(shí),是點(diǎn)x左側(cè)的第一個(gè)整數(shù)點(diǎn),如,,,,則________,________.(2)2015年11月24日,杭州地鐵1號(hào)線下沙延伸段開通運(yùn)營(yíng),極大的方便了下沙江濱居住區(qū)居民的出行,杭州地鐵收費(fèi)采用里程分段計(jì)價(jià),起步價(jià)為2元/人次,最高價(jià)為8元/人次,不足1元按1元計(jì)算,具體權(quán)費(fèi)標(biāo)準(zhǔn)如下:里程范圍4公里以內(nèi)(含4公里)4-12公里以內(nèi)(含12公里)12-24公里以內(nèi)(含24公里)24公里以上收費(fèi)標(biāo)準(zhǔn)2元4公里/元6公里/元8公里/元①若從下沙江濱站到文海南路站的里程是3.07公里,車費(fèi)________元,下沙江濱站到金沙湖站里程是7.93公里,車費(fèi)________元,下沙江濱站到杭州火東站里程是19.17公里,車費(fèi)________元;②若某人乘地鐵花了7元,則他乘地鐵行駛的路程范圍(不考慮實(shí)際站點(diǎn)下車?yán)锍糖闆r)?11.先閱讀下面的材料,再解答后面的各題:現(xiàn)代社會(huì)會(huì)保密要求越來(lái)越高,密碼正在成為人們生活的一部分,有一種密碼的明文(真實(shí)文)按計(jì)算機(jī)鍵盤字母排列分解,其中這26個(gè)字母依次對(duì)應(yīng)這26個(gè)自然數(shù)(見下表).QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526給出一個(gè)變換公式:將明文轉(zhuǎn)成密文,如,即變?yōu)椋海碅變?yōu)镾.將密文轉(zhuǎn)成成明文,如,即變?yōu)椋?,即D變?yōu)镕.(1)按上述方法將明文譯為密文.(2)若按上方法將明文譯成的密文為,請(qǐng)找出它的明文.12.先閱讀然后解答提出的問(wèn)題:設(shè)a、b是有理數(shù),且滿足,求ba的值.解:由題意得,因?yàn)閍、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無(wú)理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問(wèn)題:設(shè)x、y都是有理數(shù),且滿足,求x+y的值.13.如圖,平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是,點(diǎn)在軸的正半軸上,的面積等于18.(1)求點(diǎn)的坐標(biāo);(2)如圖,點(diǎn)從點(diǎn)出發(fā),沿軸正方向運(yùn)動(dòng),點(diǎn)運(yùn)動(dòng)至點(diǎn)停止,同時(shí)點(diǎn)從點(diǎn)出發(fā),沿軸正方向運(yùn)動(dòng),點(diǎn)運(yùn)動(dòng)至點(diǎn)停止,點(diǎn)、點(diǎn)的速度都為每秒1個(gè)單位,設(shè)運(yùn)動(dòng)時(shí)間為秒,的面積為,求用含的式子表示,并直接寫出的取值范圍;(3)在(2)的條件下,過(guò)點(diǎn)作,連接并延長(zhǎng)交于,連接交于點(diǎn),若,求值及點(diǎn)的坐標(biāo).14.如圖,已知直線,點(diǎn)在直線上,點(diǎn)在直線上,點(diǎn)在點(diǎn)的右側(cè),平分平分,直線交于點(diǎn).(1)若時(shí),則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動(dòng),其他條件不變,請(qǐng)畫出相應(yīng)圖形,并直接寫出的度數(shù).(用含的代數(shù)式表示)15.在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD.(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;(3)點(diǎn)P是直線BD上一個(gè)動(dòng)點(diǎn),連接PC、PO,當(dāng)點(diǎn)P在直線BD上運(yùn)動(dòng)時(shí),請(qǐng)直接寫出∠OPC與∠PCD、∠POB的數(shù)量關(guān)系16.如圖,數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別是-1,1,點(diǎn)P是線段AB上一動(dòng)點(diǎn),給出如下定義:如果在數(shù)軸上存在動(dòng)點(diǎn)Q,滿足|PQ|=2,那么我們把這樣的點(diǎn)Q表示的數(shù)稱為連動(dòng)數(shù),特別地,當(dāng)點(diǎn)Q表示的數(shù)是整數(shù)時(shí)我們稱為連動(dòng)整數(shù).(1)在-2.5,0,2,3.5四個(gè)數(shù)中,連動(dòng)數(shù)有;(直接寫出結(jié)果)(2)若k使得方程組中的x,y均為連動(dòng)數(shù),求k所有可能的取值;(3)若關(guān)于x的不等式組的解集中恰好有4個(gè)連動(dòng)整數(shù),求這4個(gè)連動(dòng)整數(shù)的值及a的取值范圍.17.如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn),與y軸交于點(diǎn),且(1)求;(2)若為直線上一點(diǎn).①的面積不大于面積的,求P點(diǎn)橫坐標(biāo)x的取值范圍;②請(qǐng)直接寫出用含x的式子表示y.(3)已知點(diǎn),若的面積為6,請(qǐng)直接寫出m的值.18.在平面直角坐標(biāo)系中,點(diǎn),滿足關(guān)系式.(1)求,的值;(2)若點(diǎn)滿足的面積等于,求的值;(3)線段與軸交于點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),在軸上以每秒個(gè)單位長(zhǎng)度的速度向下運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),問(wèn)為何值時(shí)有,請(qǐng)直接寫出的值.19.李師傅要給-塊長(zhǎng)9米,寬7米的長(zhǎng)方形地面鋪瓷磚.如圖,現(xiàn)有A和B兩種款式的瓷磚,且A款正方形瓷磚的邊長(zhǎng)與B款長(zhǎng)方形瓷磚的長(zhǎng)相等,B款瓷磚的長(zhǎng)大于寬.已知一塊A款瓷磚和-塊B款瓷磚的價(jià)格和為140元;3塊A款瓷磚價(jià)格和4塊B款瓷磚價(jià)格相等.請(qǐng)回答以下問(wèn)題:(1)分別求出每款瓷磚的單價(jià).(2)若李師傅買兩種瓷磚共花了1000元,且A款瓷磚的數(shù)量比B款多,則兩種瓷磚各買了多少塊?(3)李師傅打算按如下設(shè)計(jì)圖的規(guī)律進(jìn)行鋪瓷磚.若A款瓷磚的用量比B款瓷磚的2倍少14塊,且恰好鋪滿地面,則B款瓷磚的長(zhǎng)和寬分別為_米(直接寫出答案).20.甲從A地出發(fā)步行到B地,乙同時(shí)從B地步行出發(fā)至A地,2小時(shí)后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小時(shí).若設(shè)甲剛出發(fā)時(shí)的速度為a千米/小時(shí),乙剛出發(fā)的速度為b千米/小時(shí).(1)A、B兩地的距離可以表示為千米(用含a,b的代數(shù)式表示);(2)甲從A到B所用的時(shí)間是:小時(shí)(用含a,b的代數(shù)式表示);乙從B到A所用的時(shí)間是:小時(shí)(用含a,b的代數(shù)式表示).(3)若當(dāng)甲到達(dá)B地后立刻按原路向A返行,當(dāng)乙到達(dá)A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小時(shí)36分鐘又再次相遇,請(qǐng)問(wèn)AB兩地的距離為多少?21.已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.(1)如圖1,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,∠BAD與∠C有何數(shù)量關(guān)系,并說(shuō)明理由;(2)如圖2,在(1)問(wèn)的條件下,點(diǎn)E,F(xiàn)在DM上,連接BE,BF,CF,若BF平分∠DBC,BE平分∠ABD,∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠ABE的度數(shù).22.對(duì)于不為0的一位數(shù)和一個(gè)兩位數(shù),將數(shù)放置于兩位數(shù)之前,或者將數(shù)放置于兩位數(shù)的十位數(shù)字與個(gè)位數(shù)字之間就可以得到兩個(gè)新的三位數(shù),將較大三位數(shù)減去較小三位數(shù)的差與15的商記為.例如:當(dāng),時(shí),可以得到168,618.較大三位數(shù)減去較小三位數(shù)的差為,而,所以.(1)計(jì)算:.(2)若是一位數(shù),是兩位數(shù),的十位數(shù)字為(,為自然數(shù)),個(gè)位數(shù)字為8,當(dāng)時(shí),求出所有可能的,的值.23.七年(1)(2)兩班各40人參加垃圾分類知識(shí)競(jìng)賽,規(guī)則如圖.比賽中,所有同學(xué)均按要求一對(duì)一連線,無(wú)多連、少連.(1)分?jǐn)?shù)5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全錯(cuò),其余成員中,滿分人數(shù)是未滿分人數(shù)的2倍;七年(2)班所有人都得分,最低分人數(shù)的2倍與其他未滿分人數(shù)之和等于滿分人數(shù).①問(wèn)(1)班有多少人得滿分?②若(1)班除0分外,最低得分人數(shù)與其他未滿分人數(shù)相等,問(wèn)哪個(gè)班的總分高?24.對(duì)a,b定義一種新運(yùn)算T,規(guī)定:T(a,b)=(a+2b)(ax+by)(其中x,y均為非零實(shí)數(shù)).例如:T(1,1)=3x+3y.(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;(2)已知關(guān)于x,y的方程組,若a≥﹣2,求x+y的取值范圍;(3)在(2)的條件下,已知平面直角坐標(biāo)系上的點(diǎn)A(x,y)落在坐標(biāo)軸上,將線段OA沿x軸向右平移2個(gè)單位,得線段O′A′,坐標(biāo)軸上有一點(diǎn)B滿足三角形BOA′的面積為9,請(qǐng)直接寫出點(diǎn)B的坐標(biāo).25.某數(shù)碼專營(yíng)店銷售A,B兩種品牌智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如表所示:AB進(jìn)價(jià)(元/部)33003700售價(jià)(元/部)38004300(1)該店銷售記錄顯示,三月份銷售A、B兩種手機(jī)共34部,且銷售A種手機(jī)的利潤(rùn)恰好是銷售B種手機(jī)利潤(rùn)的2倍,求該店三月份售出A種手機(jī)和B種手機(jī)各多少部?(2)根據(jù)市場(chǎng)調(diào)研,該店四月份計(jì)劃購(gòu)進(jìn)這兩種手機(jī)共40部,要求購(gòu)進(jìn)B種手機(jī)數(shù)不低于A種手機(jī)數(shù)的,用于購(gòu)買這兩種手機(jī)的資金低于140000元,請(qǐng)通過(guò)計(jì)算設(shè)計(jì)所有可能的進(jìn)貨方案.26.如圖,在平面直角坐標(biāo)系中,已知兩點(diǎn),且a、b滿足點(diǎn)在射線AO上(不與原點(diǎn)重合).將線段AB平移到DC,點(diǎn)D與點(diǎn)A對(duì)應(yīng),點(diǎn)C與點(diǎn)B對(duì)應(yīng),連接BC,直線AD交y軸于點(diǎn)E.請(qǐng)回答下列問(wèn)題:(1)求A、B兩點(diǎn)的坐標(biāo);(2)設(shè)三角形ABC面積為,若4<≤7,求m的取值范圍;(3)設(shè),請(qǐng)給出,滿足的數(shù)量關(guān)系式,并說(shuō)明理由.27.某工廠準(zhǔn)備用圖甲所示的A型正方形板材和B型長(zhǎng)方形板材,制作成圖乙所示的豎式和橫式兩種無(wú)蓋箱子.(1)若現(xiàn)有A型板材150張,B型板材300張,可制作豎式和橫式兩種無(wú)蓋箱子各多少個(gè)?(2)若該工廠準(zhǔn)備用不超過(guò)24000元資金去購(gòu)買A、B兩種型號(hào)板材,制作豎式、橫式箱子共100個(gè),已知A型板材每張20元,B型板材每張60元,問(wèn)最多可以制作豎式箱子多少個(gè)?(3)若該工廠新購(gòu)得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材(不計(jì)損耗),用切割的板材制作兩種類型的箱子,要求豎式箱子不少于10個(gè),且材料恰好用完,則最多可以制作豎式箱子多少個(gè)?28.在平面直角坐標(biāo)系xOy中.點(diǎn)A,B,P不在同一條直線上.對(duì)于點(diǎn)P和線段AB給出如下定義:過(guò)點(diǎn)P向線段AB所在直線作垂線,若垂足Q落在線段AB上,則稱點(diǎn)P為線段AB的內(nèi)垂點(diǎn).若垂足Q滿足|AQ-BQ|最小,則稱點(diǎn)P為線段AB的最佳內(nèi)垂點(diǎn).已知點(diǎn)A(﹣2,1),B(1,1),C(﹣4,3).(1)在點(diǎn)P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點(diǎn)為;(2)點(diǎn)M是線段AB的最佳內(nèi)垂點(diǎn)且到線段AB的距離是2,則點(diǎn)M的坐標(biāo)為;(3)點(diǎn)N在y軸上且為線段AC的內(nèi)垂點(diǎn),則點(diǎn)N的縱坐標(biāo)n的取值范圍是;(4)已知點(diǎn)D(m,0),E(m+4,0),F(xiàn)(2m,3).若線段CF上存在線段DE的最佳內(nèi)垂點(diǎn),求m的取值范圍.29.定義:如果一個(gè)兩位數(shù)a的十位數(shù)字為m,個(gè)位數(shù)字為n,且、、,那么這個(gè)兩位數(shù)叫做“互異數(shù)”.將一個(gè)“互異數(shù)”的十位數(shù)字與個(gè)位數(shù)字對(duì)調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)新兩位數(shù)與原兩位數(shù)的和與11的商記為.例如:,對(duì)調(diào)個(gè)位數(shù)字與十位數(shù)字得到新兩位數(shù)41,新兩位數(shù)與原兩位數(shù)的和為,和與11的商為,所以.根據(jù)以上定義,解答下列問(wèn)題:(1)填空:①下列兩位數(shù):20,21,22中,“互異數(shù)”為________;②計(jì)算:________;________;(m、n分別為一個(gè)兩位數(shù)的十位數(shù)字與個(gè)位數(shù)字)(2)如果一個(gè)“互異數(shù)”b的十位數(shù)字是x,個(gè)位數(shù)字是y,且;另一個(gè)“互異數(shù)”c的十位數(shù)字是,個(gè)位數(shù)字是,且,請(qǐng)求出“互異數(shù)”b和c;(3)如果一個(gè)“互異數(shù)”d的十位數(shù)字是x,個(gè)位數(shù)字是,另一個(gè)“互異數(shù)”e的十位數(shù)字是,個(gè)位數(shù)字是3,且滿足,請(qǐng)直接寫出滿足條件的所有x的值________;(4)如果一個(gè)“互異數(shù)”f的十位數(shù)字是,個(gè)位數(shù)字是x,且滿足的互異數(shù)有且僅有3個(gè),則t的取值范圍________.30.如圖,在平面直角坐標(biāo)系中,,CD//x軸,CD=AB.(1)求點(diǎn)D的坐標(biāo):(2)四邊形OCDB的面積四邊形OCDB;(3)在y軸上是否存在點(diǎn)P,使△PAB=四邊形OCDB;若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)建立直角坐標(biāo)系見解析,當(dāng)0<t≤4時(shí),即當(dāng)點(diǎn)P在線段AB上時(shí),其坐標(biāo)為:P(2t,0),當(dāng)4<t≤7時(shí),即當(dāng)點(diǎn)P在線段BC上時(shí),其坐標(biāo)為:P(8,2t﹣8),當(dāng)7<t≤10時(shí),即當(dāng)點(diǎn)P在線段CE上時(shí),其坐標(biāo)為:P(22﹣2t,6);(2)存在,當(dāng)點(diǎn)P的坐標(biāo)分別為:P(,0)或P(8,4)時(shí),△APE的面積等于.【分析】(1)建立平面直角坐標(biāo)系,根據(jù)點(diǎn)P的運(yùn)動(dòng)速度分別求出點(diǎn)P在線段AB,BC,CE上的坐標(biāo);(2)根據(jù)(1)中得到的點(diǎn)P的坐標(biāo)以及,分別列出三個(gè)方程并解出此時(shí)t的值再進(jìn)行討論.【詳解】(1)正確畫出直角坐標(biāo)系如下:當(dāng)0<t≤4時(shí),點(diǎn)P在線段AB上,此時(shí)P點(diǎn)的橫坐標(biāo)為,其縱坐標(biāo)為0;∴此時(shí)P點(diǎn)的坐標(biāo)為:P(2t,0);同理:當(dāng)4<t≤7時(shí),點(diǎn)P在線段BC上,此時(shí)P點(diǎn)的坐標(biāo)為:P(8,2t﹣8);當(dāng)7<t≤10時(shí),點(diǎn)P在線段CE上,此時(shí)P點(diǎn)的坐標(biāo)為:P(22﹣2t,6).(2)存在,①如圖1,當(dāng)0<t≤4時(shí),點(diǎn)P在線段AB上,,解得:t(s);∴P點(diǎn)的坐標(biāo)為:P(,0).②如圖2,當(dāng)4<t≤7時(shí),點(diǎn)P在線段BC上,;∴;解得:t=6(s);∴點(diǎn)P的坐標(biāo)為:P(8,4).③如圖3,當(dāng)7<t≤10時(shí),點(diǎn)P在線段CE上,;解得:t(s);∵7,∴t(應(yīng)舍去),綜上所述:當(dāng)P點(diǎn)的坐標(biāo)為:P(,0)或P(8,4)時(shí),△APE的面積等于.【點(diǎn)睛】本題考查了三角形的面積的計(jì)算公式,,在本題計(jì)算的過(guò)程中根據(jù)動(dòng)點(diǎn)的坐標(biāo)正確地求出三角形的底邊長(zhǎng)度和高是解題的關(guān)鍵.2.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過(guò)E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過(guò)F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.3.(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過(guò)P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進(jìn)行計(jì)算即可;(2)過(guò)K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進(jìn)而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進(jìn)而得到∠AKC=∠APC;(3)過(guò)K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進(jìn)而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據(jù)已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進(jìn)而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過(guò)P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過(guò)K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過(guò)P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點(diǎn)K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過(guò)K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過(guò)P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是作出平行線構(gòu)造內(nèi)錯(cuò)角相等計(jì)算.4.(1)∠APC=α+β,理由見解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)過(guò)點(diǎn)P作PE∥AB,根據(jù)平行線的判定與性質(zhì)即可求解;(2)分點(diǎn)P在線段MN或NM的延長(zhǎng)線上運(yùn)動(dòng)兩種情況,根據(jù)平行線的判定與性質(zhì)及角的和差即可求解;(3)過(guò)點(diǎn)P,Q分別作PE∥AB,QF∥AB,根據(jù)平行線的判定與性質(zhì)及角的和差即可求解.【詳解】解:(1)如圖2,過(guò)點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如圖,在(1)的條件下,如果點(diǎn)P在線段MN的延長(zhǎng)線上運(yùn)動(dòng)時(shí),∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如圖,在(1)的條件下,如果點(diǎn)P在線段NM的延長(zhǎng)線上運(yùn)動(dòng)時(shí),∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如圖3,過(guò)點(diǎn)P,Q分別作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=∠BAP,∠DCQ=∠PCD,∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),添加輔助線將兩條平行線相關(guān)的角聯(lián)系到一起是解題的關(guān)鍵.5.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過(guò)作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對(duì)點(diǎn)P進(jìn)行分類討論:當(dāng)點(diǎn)在延長(zhǎng)線時(shí);當(dāng)在之間時(shí);與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過(guò)作交于,∵,∴,∴,,∴;②當(dāng)點(diǎn)在延長(zhǎng)線時(shí),如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時(shí),如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行內(nèi)錯(cuò)角相等,從而得到角的關(guān)系.6.(1)①18°;②2∠BEG+∠HFG=90°,證明見解析;(2)2∠BEG-∠HFG=90°證明見解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線的性質(zhì)證明即可.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.利用平行線的性質(zhì)證明即可.【詳解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案為:18°.②結(jié)論:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.7.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根據(jù)布谷數(shù)的定義把2和32化為底數(shù)為2的冪即可得出答案;(2)①根據(jù)布谷數(shù)的運(yùn)算性質(zhì),g(14)=g(2×7)=g(2)+g(7),,再代入數(shù)值可得解;②根據(jù)布谷數(shù)的運(yùn)算性質(zhì),先將兩式化為,,再代入求解.【詳解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案為1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案為3.807,0.807;②∵.∴;.【點(diǎn)睛】本題考查有理數(shù)的乘方運(yùn)算,新定義;能夠?qū)⑿露x的運(yùn)算轉(zhuǎn)化為有理數(shù)的乘方運(yùn)算是解題的關(guān)鍵.8.(1)兩;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根據(jù)夾逼法和立方根的定義進(jìn)行解答;(2)先分別求得1至9中奇數(shù)的立方,然后根據(jù)末位數(shù)字是幾進(jìn)行判斷即可;(3)先利用(2)中的方法判斷出個(gè)數(shù)數(shù)字,然后再利用夾逼法判斷出十位數(shù)字即可;(4)利用(3)中的方法確定出個(gè)位數(shù)字和十位數(shù)字即可.【詳解】(1)∵1000<59319<1000000,∴59319的立方根是兩位數(shù);(2)∵125,343,729,∴59319的個(gè)位數(shù)字是9,則59319的立方根的個(gè)位數(shù)字是9;(3)∵,且59319的立方根是兩位數(shù),∴59319的立方根的十位數(shù)字是3,又∵59319的立方根的個(gè)位數(shù)字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是兩位數(shù);∵125,343,729,∴103823的個(gè)位數(shù)字是3,則103823的立方根的個(gè)位數(shù)字是7;∵,且103823的立方根是兩位數(shù),∴103823的立方根的十位數(shù)字是4,又∵103823的立方根的個(gè)位數(shù)字是7,∴103823的立方根是47.【點(diǎn)睛】考查了立方根的概念和求法,解題關(guān)鍵是理解一個(gè)數(shù)的立方的個(gè)位數(shù)就是這個(gè)數(shù)的個(gè)位數(shù)的立方的個(gè)位數(shù).9.(1)1022;(2)3066,2226;(3)【分析】(1)由于千位不能為0,最小只能取1;根據(jù)題目得出相應(yīng)的公式:十位=2×千位﹣百位,個(gè)位=2×千位+百位,分別求出十位和個(gè)位,即可求出最小的四位依賴數(shù);(2)設(shè)千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個(gè)位數(shù)字是(2x+y),依據(jù)題意列出代數(shù)式然后表示為7的倍數(shù)加余數(shù)形式,然后求出x、y即可,從而求出所有特色數(shù);(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時(shí)F(m)=,故將(2)中特色數(shù)分解,找到最小分解,然后將n、p、q的值代入F(m)=,再比較大小即可.【詳解】解:(1)由題意可知:千位一定是1,百位取0,十位上的數(shù)字為:2×1-0=2,個(gè)位上的數(shù)字為:2×1+0=2則最小的四位依賴數(shù)是1022;(2)設(shè)千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個(gè)位數(shù)字是(2x+y),根據(jù)題意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非負(fù)整數(shù))∴此方程的一位整數(shù)解為:x=4,y=5(此時(shí)2x+y>10,故舍去);x=3,y=7(此時(shí)2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此時(shí)2x﹣y<0,故舍去);∴特色數(shù)是3066,2226.(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時(shí)F(m)=,由(2)可知:特色數(shù)有3066和2226兩個(gè),對(duì)于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解時(shí):n=2,p=50,q=61∴F(3066)=對(duì)于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解時(shí):n=2,p=34,q=65∴F(2226)=∵故所有“特色數(shù)”的F(m)的最大值為:.【點(diǎn)睛】此題考查的是新定義類問(wèn)題,理解題意,并根據(jù)新定義解決問(wèn)題是解決此題的關(guān)鍵.10.(1);;(2)①2;3;6.②這個(gè)乘客花費(fèi)7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【分析】(1)根據(jù)題意,確定實(shí)數(shù)左側(cè)第一個(gè)整數(shù)點(diǎn)所對(duì)應(yīng)的數(shù)即得;(2)①根據(jù)表格確定乘坐里程的對(duì)應(yīng)段,然后將乘坐里程分段計(jì)費(fèi)并累加即得;②根據(jù)表格將每段的費(fèi)用從左至右依次累加直至費(fèi)用為7元,進(jìn)而確定7元乘坐的具體里程即得.【詳解】(1)∵∴∵∴故答案為:;.(2)①∵∴3.07公里需要2元∵∴7.93公里所需費(fèi)用分為兩段即:前4公里2元,后3.93公里1元∴7.93公里所需費(fèi)用為:(元)∵∴公里所需費(fèi)用分為三段計(jì)費(fèi)即:前4公里2元,4至12公里2元,12公里至19.17公里2元;∴公里所需費(fèi)用為:(元)故答案為:2;3;6.②由題意得:乘坐24公里所需費(fèi)用分為三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需費(fèi)用為:(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地鐵最大里程為:(公里)∴這個(gè)乘客花費(fèi)7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里答:這個(gè)乘客花費(fèi)7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【點(diǎn)睛】本題是閱讀材料題,考查了實(shí)數(shù)的實(shí)際應(yīng)用,根據(jù)材料中的新定義舉一反三并挖掘材料中深層次含義是解題關(guān)鍵.11.(1)N,E,T密文為M,Q,P;(2)密文D,W,N的明文為F,Y,C.【分析】(1)
由圖表找出N,E,T對(duì)應(yīng)的自然數(shù),再根據(jù)變換公式變成密文.(2)由圖表找出N=M,Q,P對(duì)應(yīng)的自然數(shù),再根據(jù)變換.公式變成明文.【詳解】解:(1)將明文NET轉(zhuǎn)換成密文:即N,E,T密文為M,Q,P;(2)將密文D,W,N轉(zhuǎn)換成明文:即密文D,W,N的明文為F,Y,C.【點(diǎn)睛】本題考查有理數(shù)的混合運(yùn)算,此題較復(fù)雜,解答本題的關(guān)鍵是由圖表中找到對(duì)應(yīng)的數(shù)或字母,正確運(yùn)用轉(zhuǎn)換公式進(jìn)行轉(zhuǎn)換.12.7或-1.【分析】根據(jù)題目中給出的方法,對(duì)所求式子進(jìn)行變形,求出x、y的值,進(jìn)而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當(dāng)x=4時(shí),x+y=4+3=7當(dāng)x=-4時(shí),x+y=-4+3=-1∴x+y的值是7或-1.【點(diǎn)睛】本題考查實(shí)數(shù)的運(yùn)算,解題的關(guān)鍵是弄清題中給出的解答方法,然后運(yùn)用類比的思想進(jìn)行解答.13.(1);(2)();(3)的值為4,點(diǎn)的坐標(biāo)是.【分析】(1)根據(jù)△AOB的面積可求得OA的長(zhǎng),即可求得點(diǎn)A的坐標(biāo);(2)由題意可分別得,由三角形面積公式即可得結(jié)果,由點(diǎn)Q只在線段OB上運(yùn)動(dòng),從而可得t的取值范圍;(3)利用割補(bǔ)方法,由則可求得t的值;連接OE,由可求得OF的長(zhǎng),從而求得點(diǎn)F的坐標(biāo).【詳解】(1)∵B(-6,0),∴OB=6,∵,∴,∴OA=6,∴.(2)∵,,∴,∴()(3)∵,,∴,∴,解得,則,∴,連接,如圖∵,∴∴∴點(diǎn)坐標(biāo)為綜上所述:的值為4,點(diǎn)的坐標(biāo)是.【點(diǎn)睛】本題考查了代數(shù)式,三角形面積,用到了割補(bǔ)方法,也是本題的關(guān)鍵和難點(diǎn).14.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過(guò)點(diǎn)E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯(cuò)角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當(dāng)點(diǎn)B在點(diǎn)A左側(cè)和當(dāng)點(diǎn)B在點(diǎn)A右側(cè),再分三種情況,討論,分別過(guò)點(diǎn)E作EF∥AB,由角平分線的定義,平行線的性質(zhì),以及角的和差計(jì)算即可.【詳解】解:(1)當(dāng)n=20時(shí),∠ABC=40°,過(guò)E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當(dāng)點(diǎn)B在點(diǎn)A左側(cè)時(shí),由(2)可知:∠BED=n°+40°;當(dāng)點(diǎn)B在點(diǎn)A右側(cè)時(shí),如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;綜上所述,∠BED的度數(shù)為n°+40°或n°-40°或220°-n°.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),以及角平分線的定義,正確應(yīng)用平行線的性質(zhì)得出各角之間關(guān)系是解題關(guān)鍵.15.(1)C(0,2),D(4,2),S四邊形ABDC=8;(2)存在,P(0,4)或(0,﹣4);(3)點(diǎn)p在線段BD上,∠OPC=∠PCD+∠POB;點(diǎn)P在BD延長(zhǎng)線上,∠OPC=∠POB-∠PCD;點(diǎn)P在DB延長(zhǎng)線上運(yùn)動(dòng)時(shí),∠OPC=∠PCD-∠POB.【解析】【分析】(1)根據(jù)點(diǎn)平移的規(guī)律易得點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(4,2);四邊形ABDC的面積=2×(3+1)=8;(2)存在.設(shè)點(diǎn)P到AB的距離為h,則S△PAB=×AB×h,根據(jù)S△PAB=S四邊形ABDC,列方程求h的值,確定P點(diǎn)坐標(biāo).(3)分類討論:當(dāng)點(diǎn)P在線段BD上,作PM∥AB,根據(jù)平行線的性質(zhì)由MP∥AB得∠2=∠POB,由CD∥AB得到CD∥MF,則∠1=∠PCD,所以∠OPC=∠POB+∠PCD;同樣得到當(dāng)點(diǎn)P在線段DB的延長(zhǎng)線上,∠OPC=∠PCD-∠POB;當(dāng)點(diǎn)P在線段BD的延長(zhǎng)線上,得到∠OPC=∠POB-∠PCD.【詳解】(1)依題意,得C(0,2),D(4,2),∴S四邊形ABDC=AB×OC=4×2=8;(2)在y軸上是存在一點(diǎn)P,使S△PAB=S四邊形ABDC.理由如下:設(shè)點(diǎn)P到AB的距離為h,S△PAB=×AB×h=2h,由S△PAB=S四邊形ABDC,得2h=8,解得h=4,∴P(0,4)或(0,-4).(3)當(dāng)點(diǎn)P在線段BD上,作PM∥AB,如圖1,∵M(jìn)P∥AB,∴∠2=∠POB,∵CD∥AB,∴CD∥MP,∴∠1=∠PCD,∴∠OPC=∠1+∠2=∠POB+∠PCD;當(dāng)點(diǎn)P在線段DB的延長(zhǎng)線上,作PN∥AB,如圖2,∵PN∥AB,∴∠NPO=∠POB,∵CD∥AB,∴CD∥PN,∴∠NPC=∠FCD,∴∠OPC=∠NPC-∠NPO=∠FCD-∠POB;同樣得到當(dāng)點(diǎn)P在線段BD的延長(zhǎng)線上,得到∠OPC=∠POB-∠PCD.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)得到線段的長(zhǎng)和線段與坐標(biāo)軸的關(guān)系.也考查了平行線的性質(zhì)和分類討論的思想.16.(1)-2.5,2;(2)k=-8或-6或-4;(3)2,1,-1,-2,【分析】(1)根據(jù)連動(dòng)數(shù)的定義即可確定;(2)先表示出x,y的值,再根據(jù)連動(dòng)數(shù)的范圍求解即可;(3)求得不等式的解,根據(jù)連動(dòng)整數(shù)的概念得到關(guān)于a的不等式,解不等式即可求得.【詳解】解:(1)∵點(diǎn)P是線段AB上一動(dòng)點(diǎn),點(diǎn)A、點(diǎn)B對(duì)應(yīng)的數(shù)分別是-1,1,又∵|PQ|=2,∴連動(dòng)數(shù)Q的范圍為:或,∴連動(dòng)數(shù)有-2.5,2;(2),②×3-①×4得:,①×3-②×2得:,要使x,y均為連動(dòng)數(shù),或,解得或或,解得或∴k=-8或-6或-4;(3)解得:,∵解集中恰好有4個(gè)解是連動(dòng)整數(shù),∴四個(gè)連動(dòng)整數(shù)解為-2,-1,1,2,∴,∴∴a的取值范圍是.【點(diǎn)睛】本題考查了解一元一次不等式組的整數(shù)解,一元一次方程的解,根據(jù)新定義得到不等式組是解題的關(guān)鍵,17.(1)4;(2)①或;②;(3)或.【分析】(1)先根據(jù)偶次方和絕對(duì)值的非負(fù)性求出的值,從而可得點(diǎn)的坐標(biāo)和的長(zhǎng),再利用直角三角形的面積公式即可得;(2)①分和兩種情況,先分別求出和的面積,再根據(jù)已知條件建立不等式,解不等式即可得;②分和兩種情況,利用、和的面積關(guān)系建立等式,化簡(jiǎn)即可得;(3)過(guò)點(diǎn)作軸的平行線,交直線于點(diǎn),從而可得,再分、和三種情況,分別利用三角形的面積公式建立方程,解方程即可得.【詳解】解:(1)由題意得:,解得,,,軸軸,;(2)①的面積不大于面積的,的面積小于的面積,則分以下兩種情況:如圖,當(dāng)時(shí),則,,因此有,解得,此時(shí)的取值范圍為;如圖,當(dāng)時(shí),則,,因此有,解得,此時(shí)的取值范圍為,綜上,點(diǎn)橫坐標(biāo)的取值范圍為或;②當(dāng)時(shí),則,,由(2)①可知,,則,即;如圖,當(dāng)時(shí),則,,,,,解得,綜上,;(3)過(guò)點(diǎn)作軸的平行線,交直線于點(diǎn),由(2)②可知,,則,由題意,分以下三種情況:①如圖,當(dāng)時(shí),則,,解得,不符題設(shè),舍去;②如圖,當(dāng)時(shí),則,,解得或(不符題設(shè),舍去);③如圖,當(dāng)時(shí),則,,解得,符合題設(shè),綜上,的值為或.【點(diǎn)睛】本題考查了偶次方和絕對(duì)值的非負(fù)性、坐標(biāo)與圖形等知識(shí)點(diǎn),較難的是題(3),正確分三種情況討論是解題關(guān)鍵.18.(1),;(2)或;(3)或【分析】(1)根據(jù)一個(gè)數(shù)的平方與絕對(duì)值均非負(fù),且其和為0,則可得它們都為0,從而可求得a和b的值;(2)過(guò)點(diǎn)P作直線l垂直于x軸,延長(zhǎng)交直線于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過(guò)作交直線于點(diǎn),根據(jù)面積關(guān)系求出Q點(diǎn)坐標(biāo),再求出PQ的長(zhǎng)度,即可求出n的值;(3)先根據(jù)求出C點(diǎn)坐標(biāo),再根據(jù)求出D點(diǎn)坐標(biāo),根據(jù)題意可得F點(diǎn)坐標(biāo),由得關(guān)于t的方程,求出t值即可.【詳解】(1),,且,,(2)過(guò)作直線垂直于軸,延長(zhǎng)交直線于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過(guò)作交直線于點(diǎn),如圖所示∵∴解得,點(diǎn)坐標(biāo)為∵∴解得:或(3)當(dāng)或時(shí),有.如圖,延長(zhǎng)BA交x軸于點(diǎn)D,過(guò)A點(diǎn)作AG⊥x軸于點(diǎn)G,過(guò)B點(diǎn)作BN⊥x軸于點(diǎn)N,∵∴解得:∴∵∴解得:∵∴當(dāng)運(yùn)動(dòng)t秒時(shí),∴∵CE=t∴,∵∴解得:或.【點(diǎn)睛】本題主要考查三角形的面積,含絕對(duì)值方程解法,熟練掌握直角坐標(biāo)系的知識(shí),三角形的面積,梯形的面積等知識(shí)是解題的關(guān)鍵,難點(diǎn)在于對(duì)圖形進(jìn)行割補(bǔ)轉(zhuǎn)化為易求面積的圖形.19.(1)A款瓷磚單價(jià)為80元,B款單價(jià)為60元.(2)買了11塊A款瓷磚,2塊B款;或8塊A款瓷磚,6塊B款.(3)B款瓷磚的長(zhǎng)和寬分別為1,或1,.【分析】(1)設(shè)A款瓷磚單價(jià)x元,B款單價(jià)y元,根據(jù)“一塊A款瓷磚和一塊B款瓷磚的價(jià)格和為140元;3塊A款瓷磚價(jià)格和4塊B款瓷磚價(jià)格相等”列出二元一次方程組,求解即可;(2)設(shè)A款買了m塊,B款買了n塊,且m>n,根據(jù)共花1000元列出二元一次方程,求出符合題意的整數(shù)解即可;(3)設(shè)A款正方形瓷磚邊長(zhǎng)為a米,B款長(zhǎng)為a米,寬b米,根據(jù)圖形以及“A款瓷磚的用量比B款瓷磚的2倍少14塊”可列出方程求出a的值,然后由是正整教分情況求出b的值.【詳解】解:(1)設(shè)A款瓷磚單價(jià)x元,B款單價(jià)y元,則有,解得,答:A款瓷磚單價(jià)為80元,B款單價(jià)為60元;(2)設(shè)A款買了m塊,B款買了n塊,且m>n,則80m+60n=1000,即4m+3n=50∵m,n為正整數(shù),且m>n∴m=11時(shí)n=2;m=8時(shí),n=6,答:買了11塊A款瓷磚,2塊B款瓷磚或8塊A款瓷磚,6塊B款瓷磚;(3)設(shè)A款正方形瓷磚邊長(zhǎng)為a米,B款長(zhǎng)為a米,寬b米.由題意得:,解得a=1.由題可知,是正整教.設(shè)(k為正整數(shù)),變形得到,當(dāng)k=1時(shí),,故合去),當(dāng)k=2時(shí),,故舍去),當(dāng)k=3時(shí),,當(dāng)k=4時(shí),,答:B款瓷磚的長(zhǎng)和寬分別為1,或1,.【點(diǎn)睛】本題主要考查了二元一次方程組的實(shí)際應(yīng)用,(1)(2)較為簡(jiǎn)單,(3)中利用數(shù)形結(jié)合的思想,找出其中兩款瓷磚的數(shù)量與圖形之間的規(guī)律是解題的關(guān)鍵.20.(1)2(a+b);(2)(2+);(2+);(3)36.【分析】(1)根據(jù)兩地間的距離=兩人的速度之和×第一次相遇所需時(shí)間,即可得出結(jié)論;(2)利用時(shí)間=路程÷速度結(jié)合2小時(shí)后第一次相遇,即可得出結(jié)論;(3)設(shè)AB兩地的距離為S千米,根據(jù)路程=速度×?xí)r間,即可得出關(guān)于(a+b),S的二元一次方程組(此處將a+b當(dāng)成一個(gè)整體),解之即可得出結(jié)論.【詳解】(1)A、B兩地的距離可以表示為2(a+b)千米.故答案為:2(a+b).(2)甲乙相遇時(shí),甲已經(jīng)走了千米,乙已經(jīng)走了千米,根據(jù)相遇后他們的速度都提高了1千米/小時(shí),得甲還需小時(shí)到達(dá)B地,乙還需小時(shí)到達(dá)A地,所以甲從A到B所用的時(shí)間為(2+)小時(shí),乙從B到A所用的時(shí)間為(2+)小時(shí).故答案為:(2+);(2+).(3)設(shè)AB兩地的距離為S千米,3小時(shí)36分鐘=小時(shí).依題意,得:,令x=a+b,則原方程變形為,解得:.答:AB兩地的距離為36千米.【點(diǎn)睛】本題考查了列代數(shù)式以及二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.21.(1)∠C+∠BAD=90°,理由見解析;(2)9°【分析】(1)先過(guò)點(diǎn)B作BG∥DM,根據(jù)同角的余角相等,得出∠ABD=∠CBG,再根據(jù)平行線的性質(zhì),得出∠C=∠CBG,即可得到∠ABD=∠C,可得∠C+∠BAD=90°;(2)先過(guò)點(diǎn)B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,再設(shè)∠DBE=α,∠ABF=β,根據(jù)∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=9°.【詳解】解:(1)如圖2,過(guò)點(diǎn)B作BG∥DM,∵BD⊥AM,∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C,∴∠C+∠BAD=90°;(2)如圖3,過(guò)點(diǎn)B作BG∥DM,BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(1)可得∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=5∠DBE=5α,∴∠AFC=5α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②聯(lián)立方程組,解得α=9°,∴∠ABE=9°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)的運(yùn)用,解決問(wèn)題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用等角的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計(jì)算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時(shí)注意方程思想的運(yùn)用.22.(1)=6;(2)a=3,b=78或a=7,b=78.【分析】(1)=(217-127)÷15=6;(2)分1≤a<5,a=5,5<a≤9三種情形討論計(jì)算.【詳解】(1)當(dāng),時(shí),可以得到217,127.較大三位數(shù)減去較小三位數(shù)的差為,而,∴.(2)當(dāng),時(shí),可以得a50,5a0.三位數(shù)分別為100a+50,500+10a,當(dāng)1≤a<5時(shí),(500+10a)-(100a+50)=450-90a,而,∴=,∴=;當(dāng)a=5時(shí),(500+10a)-(100a+50)=0,而,∴=0,∴=0;當(dāng)5<a≤9時(shí),(100a+50)-(500+10a)=90a-450,而,∴=,∴=a-5;當(dāng),時(shí),可以得900+10x+8,100x+98.∵,∴(900+10x+8)-(100x+98)=810-90x,而,∴=,,∴=;當(dāng)1≤a<5時(shí),5-a+27-3x=8,∴a+3x=24,∴當(dāng)a=1時(shí),x=(舍去),當(dāng)a=2時(shí),x=(舍去),當(dāng)a=3時(shí),x=7,當(dāng)a=4時(shí),x=(舍去),∴a=3,b=78;當(dāng)a=5時(shí),則27-3x=8,∴x=(舍去),當(dāng)5<a≤9時(shí),則a-5+27-3x=8,∴3x-a=14,∴當(dāng)a=6時(shí),x=(舍去),當(dāng)a=7時(shí),x=7,當(dāng)a=8時(shí),x=(舍去),當(dāng)a=9時(shí),x=(舍去),∴a=7,b=78;綜上所述,a=3,b=78或a=7,b=78.【點(diǎn)睛】本題考查了新定義問(wèn)題和二元一次方程的整數(shù)解,準(zhǔn)確理解新定義的意義,靈活運(yùn)用分類思想和枚舉法是解題的關(guān)鍵.23.(1)15;(2)①七年級(jí)(1)班有24人得滿分;②七年級(jí)(2)班的總分高.【分析】(1)分別對(duì)連正確的數(shù)量進(jìn)行分析,即可得到答案;(2)①設(shè)七年(1)班滿分人數(shù)有x人,則未滿分的有人,然后列出方程,解方程即可得到答案;②根據(jù)題意,先求出兩個(gè)班各分?jǐn)?shù)段的人數(shù),然后求出各班的總分,即可進(jìn)行比較.【詳解】解:(1)根據(jù)題意,連對(duì)0個(gè)得分為0分;連對(duì)一個(gè)得分為5分;連對(duì)兩個(gè)得分為10分;連對(duì)四個(gè)得分為20分;不存在連對(duì)三個(gè)的情況,則得15分是不可能的;故答案為:15.(2)①根據(jù)題意,設(shè)七年(1)班滿分人數(shù)有x人,則未滿分的有人,則,解得:,∴(1)班有24人得滿分;②根據(jù)題意,(1)班中除0分外,最低得分人數(shù)與其他未滿分人數(shù)相等,∴(1)班得5分和10分的人數(shù)相等,人數(shù)為:(人);∴(1)班得總分為:(分);由題意,(2)班存在得5分、得10分、得20分,三種情況,設(shè)得5分的有y人,得10分的有z人,滿分20分的有人,∴,∴,∴七(2)班得總分為:(分);∵,∴七(2)班的總分高.【點(diǎn)睛】本題考查了二元一次方程的應(yīng)用,一元一次方程的應(yīng)用,解題的關(guān)鍵是熟練掌握題意,正確掌握題目的等量關(guān)系,列出方程進(jìn)行解題.24.(1)x=1,y=1;(2);(3)或或或或或【分析】(1)根據(jù)新運(yùn)算定義建立方程組,解方程組即可得出答案;(2)應(yīng)用新運(yùn)算定義建立方程組,解關(guān)于、的方程組可得,進(jìn)而得出,再運(yùn)用不等式性質(zhì)即可得出答案;(3)根據(jù)題意得,由平移可得,根據(jù)點(diǎn)落在坐標(biāo)軸上,且,分類討論即可.【詳解】解:(1)根據(jù)新運(yùn)算的定義可得:,解得:;(2)由題意得:,解得:,,,,,;(3)由(2)知,,,將線段沿軸向右平移2個(gè)單位,得線段,,點(diǎn)落在坐標(biāo)軸上,且,或,或;①當(dāng)時(shí),,若點(diǎn)在軸上,,,或;若點(diǎn)在軸上,,,或;②當(dāng)時(shí),;點(diǎn)只能在軸上,,,或;綜上所述,點(diǎn)的坐標(biāo)為或或或或或.【點(diǎn)睛】本題考查了新運(yùn)算定義,解二元一次方程組,不等式性質(zhì),平移變換的性質(zhì),理解并應(yīng)用新運(yùn)算定義是解題關(guān)鍵.25.(1)該店三月份售出A種手機(jī)24部,B種手機(jī)10部;(2)共有5種進(jìn)貨方案,分別是A種手機(jī)21部,B種手機(jī)19部;A種手機(jī)22部,B種手機(jī)18部;A種手機(jī)23部,B種手機(jī)17部;A種手機(jī)24部,B種手機(jī)16部;A種手機(jī)25部,B種手機(jī)15部【分析】(1)設(shè)該店三月份售出A種手機(jī)x部,B種手機(jī)y部,由“三月份銷售A、B兩種手機(jī)共34部,且銷售A種手機(jī)的利潤(rùn)恰好是銷售B種手機(jī)利潤(rùn)的2倍”列出方程組,可求解;(2)設(shè)A種手機(jī)a部,B種手機(jī)(40﹣a)部,由“購(gòu)進(jìn)B種手機(jī)數(shù)不低于A種手機(jī)數(shù)的,用于購(gòu)買這兩種手機(jī)的資金低于140000元”列出不等式組,即可求解.【詳解】解:(1)設(shè)該店三月份售出A種手機(jī)x部,B種手機(jī)y部,由題意可得:,解得:,答:該店三月份售出A種手機(jī)24部,B種手機(jī)10部;(2)設(shè)A種手機(jī)a部,B種手機(jī)(40﹣a)部,由題意可得,解得:20<a≤25,∵a為整數(shù),∴a=21,22,23,24,25,∴共有5種進(jìn)貨方案,分別是A種手機(jī)21部,B種手機(jī)19部;A種手機(jī)22部,B種手機(jī)18部;A種手機(jī)23部,B種手機(jī)17部;A種手機(jī)24部,B種手機(jī)16部;A種手機(jī)25部,B種手機(jī)15部.【點(diǎn)睛】本題考查了一元一次不等式組解實(shí)際問(wèn)題的運(yùn)用,二元一次方程組解實(shí)際問(wèn)題的運(yùn)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.26.(1);(2);(3)當(dāng)點(diǎn)C在x軸的正半軸上時(shí),;當(dāng)點(diǎn)C在點(diǎn)A和點(diǎn)O之間時(shí),,理由見解析.【分析】(1)由非負(fù)性可得,解方程組可求解a,b的值,即可求解;(2)由平移的性質(zhì)可得AC=m-(-3)=m+3,OB=2,由三角形的面積公式可求m的取值范圍;(3)由平移的性質(zhì)可得AD∥BC.分兩種情況:當(dāng)點(diǎn)C在x軸的正半軸上時(shí);當(dāng)點(diǎn)C在點(diǎn)A和點(diǎn)O之間時(shí).由平行線的性質(zhì)可求解.【詳解】解:(1)由題意可知解得所以(2)三角形的面積為由得4<≤7所以;(3)作OF//BC,當(dāng)點(diǎn)C在x軸的正半軸上時(shí),如圖1,當(dāng)點(diǎn)C在點(diǎn)A和點(diǎn)O之間時(shí),如圖2,.【點(diǎn)睛】本題是幾何變換綜合題,考查了非負(fù)性,二元一次方程組的解法,一元一次不等式組的解法,平移的性質(zhì)等知識(shí),靈活運(yùn)用這些性質(zhì)進(jìn)行推理計(jì)算是本題的關(guān)鍵,要注意分類討論.27.(1)可制作豎式無(wú)蓋箱子30個(gè),可制作橫式無(wú)蓋箱子60個(gè);(2)最多可以制作豎式箱子50個(gè);(3)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)氧乙烷(乙二醇)裝置操作工安全綜合測(cè)試考核試卷含答案
- 電子電氣產(chǎn)品能效檢驗(yàn)員持續(xù)改進(jìn)強(qiáng)化考核試卷含答案
- 礦井通風(fēng)工安全培訓(xùn)競(jìng)賽考核試卷含答案
- 凹版制版員安全生產(chǎn)基礎(chǔ)知識(shí)能力考核試卷含答案
- 燃?xì)廨斉鋱?chǎng)站運(yùn)行工崗前基礎(chǔ)實(shí)操考核試卷含答案
- 學(xué)生清明節(jié)回家掃墓的請(qǐng)假條
- 2025年聚烯烴類線纜項(xiàng)目發(fā)展計(jì)劃
- 2025年聲增敏保偏光纖合作協(xié)議書
- 遼寧省葫蘆島市2025-2026學(xué)年高一上學(xué)期1月期末考試政治試卷
- 2026年數(shù)字藝術(shù)品收藏項(xiàng)目公司成立分析報(bào)告
- 2026年中國(guó)航空傳媒有限責(zé)任公司市場(chǎng)化人才招聘?jìng)淇碱}庫(kù)有答案詳解
- 2026年《全科》住院醫(yī)師規(guī)范化培訓(xùn)結(jié)業(yè)理論考試題庫(kù)及答案
- 2026北京大興初二上學(xué)期期末語(yǔ)文試卷和答案
- 專題23 廣東省深圳市高三一模語(yǔ)文試題(學(xué)生版)
- 廣元市利州區(qū)何家坪石材廠飾面用灰?guī)r礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 保健按摩師初級(jí)試題
- 上腔靜脈綜合征的護(hù)理
- 2021年度四川省專業(yè)技術(shù)人員繼續(xù)教育公需科目(答案整合)
- 醫(yī)療廢物處理方案
- 船舶靠離泊作業(yè)風(fēng)險(xiǎn)辨識(shí)表
- DB37T 2673-2019醫(yī)療機(jī)構(gòu)能源消耗定額標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論