版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省高州市中考數(shù)學考前沖刺練習試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列方程:①;②;③;④;⑤.是一元二次方程的是(
)A.①② B.①②④⑤ C.①③④ D.①④⑤2、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內⊙O上的一點,若∠DAB=25°,則∠OCD=(
).A.50° B.40° C.70° D.30°3、一元二次方程配方后可化為(
)A. B.C. D.4、如圖,在等腰Rt△ABC中,AC=BC=,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當點P沿半圓從點A運動至點B時,點M運動的路徑長是(
)A.π B.π C.π D.25、2020年7月20日,寧津縣人民政府印發(fā)《津縣城市生活垃圾分類制度實施方案》的通知,全面推行生活垃圾分類.下列垃圾分類標志分別是廚余垃圾、有害垃圾、其他垃圾和可回收物,其中既是軸對稱圖形又是中心對稱圖形的是(
)A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結論中正確的是(
)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE2、下面的圖形中,繞著一個點旋轉120°后,能與原來的位置重合的是(
)A. B. C. D.3、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點D、E.連接DE、OE.下列結論中正確的結論是()A.BC=2DE B.D點到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線4、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+175、在中,,,且關于x的方程有兩個相等的實數(shù)根,以下結論正確的是(
)A.AC邊上的中線長為1 B.AC邊上的高為C.BC邊上的中線長為 D.外接圓的半徑是2第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、若點A(m,5)與點B(-4,n)關于原點成中心對稱,則m+n=________.2、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.3、如圖1所示的圖形是一個軸對稱圖形,且每個角都是直角,長度如圖所示,小明按圖2所示方法玩拼圖游戲,兩兩相扣,相互間不留空隙,那么小明用9個這樣的圖形(圖1)拼出來的圖形的總長度是_______(結果用含、代數(shù)式表示).4、拋物線的圖象和軸有交點,則的取值范圍是______.5、已知二次函數(shù),當分別取時,函數(shù)值相等,則當取時,函數(shù)值為______.四、解答題(6小題,每小題10分,共計60分)1、已知關于的方程有實根.(1)求的取值范圍;(2)設方程的兩個根分別是,,且,試求的值.2、已知關于x的一元二次方程有兩個相等的實數(shù)根,求的值.3、如圖,拋物線y=2(x-2)2與平行于x軸的直線交于點A,B,拋物線頂點為C,△ABC為等邊三角形,求S△ABC;4、若二次函數(shù)圖像經(jīng)過,兩點,求、的值.5、如圖,⊙O的半徑弦AB于點C,連結AO并延長交⊙O于點E,連結EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.6、如圖所示,拋物線的對稱軸為直線,拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)連結,在第一象限內的拋物線上,是否存在一點,使的面積最大?最大面積是多少?-參考答案-一、單選題1、D【解析】【分析】根據(jù)一元二次方程的定義進行判斷.【詳解】①該方程符合一元二次方程的定義;②該方程中含有2個未知數(shù),不是一元二次方程;③該方程含有分式,它不是一元二次方程;④該方程符合一元二次方程的定義;⑤該方程符合一元二次方程的定義.綜上,①④⑤一元二次方程.故選:D.【考點】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是2.2、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質求出∠OCD=∠ODC,根據(jù)三角形內角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質,三角形內角和定理的應用,主要考查學生的推理能力,題目比較典型,難度適中.3、B【解析】【分析】根據(jù)題意直接對一元二次方程配方,然后把常數(shù)項移到等號右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項移到等號的右邊;把二次項的系數(shù)化為1;等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).4、B【解析】【分析】取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,利用勾股定理得到AB的長,進而可求出OC,OP的長,求得∠CMO=90°,于是得到點M在以OC為直徑的圓上,然后根據(jù)圓的周長公式計算點M運動的路徑長.【詳解】解:取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M為PC的中點,∴OM⊥PC,∴∠CMO=90°,∴點M在以OC為直徑的圓上,P點在A點時,M點在E點;P點在B點時,M點在F點.∵O是AB中點,E是AC中點,∴OE是△ABC的中位線,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四邊形CEOF是矩形,∵OE=OF,∴四邊形CEOF為正方形,EF=OC=2,∴M點的路徑為以EF為直徑的半圓,∴點M運動的路徑長=×π×2=π.故選:B.【考點】本題考查了等腰三角形的性質,勾股定理,正方形的判定與性質,圓周角定理,以及動點的軌跡:點按一定規(guī)律運動所形成的圖形為點運動的軌跡.解決此題的關鍵是利用圓周角定理確定M點的軌跡為以EF為直徑的半圓.5、B【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念去判斷即可.【詳解】A、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;B、是軸對稱圖形也是中心對稱圖形,故滿足題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;D、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;故選:B.【考點】本題考查了軸對稱圖形和中心對稱圖形,關鍵是緊扣軸對稱圖形和中心對稱圖形的概念.二、多選題1、ABC【解析】【分析】根據(jù)垂徑定理知,垂直于弦的直徑平分弦,并且平分線所對的兩條弧,即可判斷A選項、B選項正確,由圓周角定理知,在同圓或等圓中,同弧所對的圓周角相等,可判斷C選項正確,題目中并沒有提到E是OB中點,所以不能證明OE=BE.【詳解】A.AB為⊙O直徑,弦CD⊥AB于E,由垂徑定理得:CE=DE,A選項正確;B.由垂徑定理得:,B選項正確;C.,由圓周角定理得:∠BAC=∠BAD,C選項正確;D.E不一定是OB中點,所以不能證明OE=BE,D錯誤.故選:ABC.【考點】本題考查垂徑定理和圓周角定理,熟知垂直于弦的直徑平分弦,并且平分線所對的兩條弧是解題的關鍵.2、AB【解析】【分析】根據(jù)旋轉的性質對題中圖形進行分析即可.【詳解】解:A、旋轉任意角度都與原圖形重合,故符合題意;B、旋轉最小的度數(shù)是120度與原圖形重合,故符合題意;C、旋轉最小的度數(shù)是72度(72度的整倍數(shù)都可以)與原圖形重合,則旋轉120度不能與原圖形重合,故不符合題意;D、旋轉最小的度數(shù)是90度(90度的整倍數(shù)都可以)與原圖形重合,則旋轉120度不能與原圖形重合,故不符合題意.故選AB.【考點】本題主要考查了圖形的旋轉,理解旋轉的定義是解題的關鍵.3、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當重合,時,可得:<可得C不一定成立,根據(jù)切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數(shù)為∵的度數(shù)為∴的度數(shù)為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個定值,因而B正確,符合題意;如圖:當重合,時,則為的切線,同理可得:此時則為的直徑,>此時<所以C不符合題意;與的外接圓有兩個交點,不是外接圓的切線,所以D不符合題意;故選:AB.【考點】本題考查的是圓的基本性質,圓弧的度數(shù)與其所對的圓周角的度數(shù)之間的關系,切線的概念的理解,等邊三角形的判定與性質,靈活運用以上知識解題是解題的關鍵.4、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標函數(shù)圖象到原函數(shù)圖象方向正好相反.5、BCD【解析】【分析】由根的判別式求出AC=b=4,由勾股定理的逆定理證出△ABC是直角三角形,再由直角三角形斜邊上的中線性質即可得出AC的長,利用等積法求出斜邊上的高,根據(jù)勾股定理求出BC邊上的中線,利用直角三角形外接圓的半徑是斜邊的一半得出外接圓的半徑.【詳解】∵一元二次方程x2-4x+b=0有兩個相等的實數(shù)根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC為直角三角形,∵直角三角形斜邊上的中線等于斜邊的一半的性質,∴AC邊上的中線長=2,故A錯誤;∵ABBC=ACh∴22=4h∴h=故B正確;BC邊上的中線==故C正確直角三角形外接圓的半徑等于斜邊的一半,所以為2故D正確.故答案為:BCD【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ=0,方程有兩個相等的實數(shù)根;還考查了利用勾股定理判定直角三角形及勾股定理的應用,并考查了直角三角形斜邊上的中線等于斜邊的一半的性質以及三角形的外接圓的性質.三、填空題1、【解析】【分析】根據(jù)關于原點對稱的點的坐標特征:關于原點對稱的點,橫縱坐標都互為相反數(shù),進行求解即可.【詳解】解:∵點A(m,5)與點B(-4,n)關于原點成中心對稱,∴m=4,n=-5,∴m+n=-5+4=-1,故答案為:-1.【考點】本題主要考查了關于原點對稱點的坐標特征,代數(shù)式求值,熟知關于原點對稱的點的坐標特征是解題的關鍵.2、4【解析】【分析】由A、B坐標可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質,二次函數(shù)的頂點坐標,表示出b、c的值是解題的關鍵.3、a+8b【解析】【分析】觀察可知兩個拼接時,總長度為2a-(a-b),三個拼接時,總長度為3a-2(a-b),由此可得用9個拼接時的總長度為9a-8(a-b),由此即可得.【詳解】觀察圖形可知兩個拼接時,總長度為2a-(a-b),三個拼接時,總長度為3a-2(a-b),四個拼接時,總長度為4a-3(a-b),…,所以9個拼接時,總長度為9a-8(a-b)=a+8b,故答案為a+8b.【考點】本題考查了規(guī)律題——圖形的變化類,通過推導得出總長度與個數(shù)間的規(guī)律是解題的關鍵.4、且【解析】【分析】由題意知,,計算求解即可.【詳解】解:由題意知,解得故答案為:且.【考點】本題考查了二次函數(shù)與軸的交點個數(shù).解題的關鍵在于熟練掌握二次函數(shù)與軸的交點個數(shù).5、2020【解析】【分析】根據(jù)二次函數(shù)y=2x2+2020,當x分別取x1,x2(x1≠x2)時,函數(shù)值相等,可以得到x1和x2的關系,從而可以得到2x1+2x2的值,進而可以求得當x取2x1+2x2時,函數(shù)的值.【詳解】解:∵二次函數(shù)y=2x2+2020,當x分別取x1,x2(x1≠x2)時,函數(shù)值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴當x=2x1+2x2時,y=2×0+2020=0+2020=2020,故答案為:2020.【考點】本題考查二次函數(shù)的性質、二次函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,利用二次函數(shù)的性質解答.四、解答題1、(1);(2)不存在【解析】【分析】(1)根據(jù)根的判別式即可求出答案.(2)根據(jù)根與系數(shù)的關系即可求出答案.【詳解】解:(1)∵,,,∴,∴;(2)由題意可知:x1+x2=2,x1x2=,∵,∴,∴k=,∵,∴k=不符合題意,舍去,∴k的值不存在.【考點】本題考查了一元二次方程根的判別式,解題的關鍵是熟練運用根與系數(shù)的關系以及根的判別式,本題屬于基礎題型.2、4【解析】【分析】先根據(jù)一元二次方程根的判別式可得,從而可得,再代入計算即可得.【詳解】解:∵關于的一元二次方程有兩個相等的實數(shù)根,∴此方程根的判別式,即,則,,,.【考點】本題考查了一元二次方程根的判別式、代數(shù)式求值,熟練掌握一元二次方程根的判別式是解題關鍵.3、【解析】【分析】過B作BP⊥x軸交于點P,連接AC,BC,由拋物線y=得C(2,0),于是得到對稱軸為直線x=2,設B(m,n),根據(jù)△ABC是等邊三角形,得到BC=AB=2m-4,∠BCP=∠ABC=60°,求出PB=PC=(m-2),由于PB=n=,于是得到(m-2)=,解方程得到m的值,然后根據(jù)三角形的面積公式即可得到結果.【詳解】解:過B作BP⊥x軸交于點P,連接AC,BC,由拋物線y=得C(2,0),∴對稱軸為直線x=2,設B(m,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理人員用藥知識更新
- 跨境電商保稅倉運輸管理協(xié)議(2025年多國配送)
- 寵物驅蟲類準入考試題及答案
- 采買工作考試試題及答案
- 2025-2026人教版七年級語文期末真題卷
- 2025-2026二年級美術湘教版上學期卷
- 衛(wèi)生計生局局務會議制度
- 醫(yī)療衛(wèi)生傳染病防治制度
- 衛(wèi)生院責任管理制度
- 衛(wèi)生院創(chuàng)文自查自糾制度
- 航空安保審計培訓課件
- 高層建筑滅火器配置專項施工方案
- 2023-2024學年廣東深圳紅嶺中學高二(上)學段一數(shù)學試題含答案
- 2026元旦主題班會:馬年猜猜樂馬年成語教學課件
- 2025中國農(nóng)業(yè)科學院植物保護研究所第二批招聘創(chuàng)新中心科研崗筆試筆試參考試題附答案解析
- 反洗錢審計師反洗錢審計技巧與方法
- 檢驗科安全生產(chǎn)培訓課件
- 爆破施工安全管理方案
- 2026全國青少年模擬飛行考核理論知識題庫40題含答案(綜合卷)
- 2025線粒體醫(yī)學行業(yè)發(fā)展現(xiàn)狀與未來趨勢白皮書
- 靜壓機工程樁吊裝專項方案(2025版)
評論
0/150
提交評論