2024-2025學年度北師大版9年級數(shù)學上冊期中試題(名師系列)附答案詳解_第1頁
2024-2025學年度北師大版9年級數(shù)學上冊期中試題(名師系列)附答案詳解_第2頁
2024-2025學年度北師大版9年級數(shù)學上冊期中試題(名師系列)附答案詳解_第3頁
2024-2025學年度北師大版9年級數(shù)學上冊期中試題(名師系列)附答案詳解_第4頁
2024-2025學年度北師大版9年級數(shù)學上冊期中試題(名師系列)附答案詳解_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數(shù)學上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、定義新運算,對于任意實數(shù)a,b滿足,其中等式右邊是通常的加法、減法、乘法運算,例如,若(k為實數(shù))是關于x的方程,則它的根的情況是(

)A.有一個實根 B.有兩個不相等的實數(shù)根 C.有兩個相等的實數(shù)根 D.沒有實數(shù)根2、從下列命題中,隨機抽取一個是真命題的概率是(

)(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)兩條對角線長分別為6和8的菱形的周長是40.A. B. C. D.13、已知是方程的一個解,則的值為(

)A.10 B.-10 C.2 D.-404、在解一元二次方程x2+px+q=0時,小紅看錯了常數(shù)項q,得到方程的兩個根是﹣3,1.小明看錯了一次項系數(shù)P,得到方程的兩個根是5,﹣4,則原來的方程是()A.x2+2x﹣3=0 B.x2+2x﹣20=0 C.x2﹣2x﹣20=0 D.x2﹣2x﹣3=05、如圖,點A,B的坐標分別為,點C為坐標平面內(nèi)一點,,點M為線段的中點,連接,則的最大值為()A. B. C. D.6、已知△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或167、直線不經(jīng)過第二象限,則關于的方程實數(shù)解的個數(shù)是(

).A.0個 B.1個 C.2個 D.1個或2個二、多選題(3小題,每小題2分,共計6分)1、如圖,分別以點A、B為圓心,同樣長度為半徑作圓弧,兩弧相交于點C、D.連結(jié)AC、BC、AD、BD,則四邊形ADBC一定是(

)A.矩形 B.菱形 C.正方形 D.平行四邊形2、下列關于矩形的說法中錯誤的是()A.矩形的對角線互相垂直且平分 B.矩形的對角線相等且互相平分C.對角線相等的四邊形是矩形 D.對角線互相平分的四邊形是矩形3、若關于的一元二次方程的兩個實數(shù)根分別是,且滿足,則的值不可能為(

)A.或 B. C. D.不存在第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、一菱形的對角線長分別為24cm和10cm,則此菱形的周長為________,面積為________.2、一元二次方程的解為__________.3、如圖,將矩形的四個角向內(nèi)折起,恰好拼成一個無縫隙重疊的四邊形,若,,則邊的長是____.4、有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.5、如圖,四邊形ABCD為菱形,,延長BC到E,在內(nèi)作射線CM,使得,過點D作,垂足為F.若,則對角線BD的長為______.6、某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元,由于疫情,為了擴大銷售量,盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件.若商場平均每天銷售這種襯衫的盈利要達到1200元,則每件襯衫應降價多少元?設每件襯衫降價x元,由題意列得方程______.7、如圖所示,大正方形ABCD內(nèi)有一小正方形DEFG,對角線DF長為6cm,已知小正方形DEFG向東北方向平移3cm就得到正方形D'E'BG',則大正方形ABCD的面積為____.8、如圖,在菱形中,,,,分別是邊,上的動點,連接,,,分別為,的中點,連接,則的最小值為________.9、如圖,中,交于,交于,是的角平分線,那么四邊形的形狀是________形;在前面的條件下,若再滿足一個條件________,則四邊形是正方形.10、如圖,四邊形、是正方形,點、分別在、上,連接,過點作,交于點,若,,則________.四、解答題(6小題,每小題10分,共計60分)1、已知關于x的一元二次方程x2+x=k.(1)若方程有兩個不相等的實數(shù)根,求實數(shù)k的取值范圍;(2)當k=6時,求方程的實數(shù)根.2、如圖,在菱形ABCD中,AB=6,∠DAB=60°,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.(1)求證:四邊形AMDN是平行四邊形;(2)填空:①當AM的值為時,四邊形AMDN是矩形;②當AM的值為時,四邊形AMDN是菱形.3、如圖,是的中線,,且,連接,.(1)求證:;(2)當滿足條件__________時,四邊形是矩形.4、用適當?shù)姆椒ń庀铝蟹匠蹋?1)x2-x-1=0;(2)3x(x-2)=x-2;(3)x2-2x+1=0;(4)(x+8)(x+1)=-12.5、已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.(1)求證:AB=AF;(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.6、如圖,在?ABCD中,E,F(xiàn)分別是AD,BC上的點,且DE=BF,AC⊥EF,求證:四邊形AECF是菱形.-參考答案-一、單選題1、B【解析】【分析】將按照題中的新運算方法展開,可得,所以可得,化簡得:,,可得,即可得出答案.【詳解】解:根據(jù)新運算法則可得:,則即為,整理得:,則,可得:,;,方程有兩個不相等的實數(shù)根;故答案選:B.【考點】本題考查新定義運算以及一元二次方程根的判別式.注意觀察題干中新定義運算的計算方法,不能出錯;在求一元二次方程根的判別式時,含有參數(shù)的一元二次方程要尤其注意各項系數(shù)的符號.2、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)菱形的對角線長為6和8根據(jù)菱形的性質(zhì),對角線互相垂直且平分,利用勾股定理可求得菱形的邊長為5,則菱形的周長為,是假命題則隨機抽取一個是真命題的概率是,故選:C.【考點】本題考查了命題的真假,概率,菱形的性質(zhì),無理數(shù),因式分解,正方體展開圖,知識點較多,難度一般,解題的關鍵是運用所學知識判斷各個命題的真假.3、B【解析】【分析】將a代入方程得到,再將其整體代入所求代數(shù)式即可得解.【詳解】∵a是方程的一個解,∴有,即,,∴,故選:B.【考點】本題考查了一元二次方程的解的定義,此類題的特點是利用方程的解的定義找到相等關系,再將其整體代入所求代數(shù)式,即可快速作答,盲目解一元二次方程求a值再代入計算,此方法耗時費力不可?。?、B【解析】【分析】分別按照看錯的情況構建出一元二次方程,再舍去錯誤信息,從而可得正確答案.【詳解】解:小紅看錯了常數(shù)項q,得到方程的兩個根是﹣3,1,所以此時方程為:即:小明看錯了一次項系數(shù)P,得到方程的兩個根是5,﹣4,所以此時方程為:即:從而正確的方程是:故選:【考點】本題考查的是根據(jù)一元二次方程的根構建一元二次方程,掌握利用一元二次方程的根構建方程的方法是解題的關鍵.5、B【解析】【分析】如圖所示,取AB的中點N,連接ON,MN,根據(jù)三角形的三邊關系可知OM<ON+MN,則當ON與MN共線時,OM=ON+MN最大,再根據(jù)等腰直角三角形的性質(zhì)以及三角形的中位線即可解答.【詳解】解:如圖所示,取AB的中點N,連接ON,MN,三角形的三邊關系可知OM<ON+MN,則當ON與MN共線時,OM=ON+MN最大,∵,則△ABO為等腰直角三角形,∴AB=,N為AB的中點,∴ON=,又∵M為AC的中點,∴MN為△ABC的中位線,BC=1,則MN=,∴OM=ON+MN=,∴OM的最大值為故答案選:B.【考點】本題考查了等腰直角三角形的性質(zhì)以及三角形中位線的性質(zhì),解題的關鍵是確定當ON與MN共線時,OM=ON+MN最大.6、D【解析】【分析】由△ABC為等腰三角形,BC=6,且AB,AC為方程x2﹣8x+m=0兩根,可得兩種情況:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此時方程的判別式為0,分別求解即可.【詳解】解:∵△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此時方程的判別式為0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故選:D.【考點】本題考查了一元二次方程的判別式和等腰三角形的性質(zhì),熟練掌握知識點是解題的關鍵.7、D【解析】【分析】根據(jù)直線不經(jīng)過第二象限,得到,再分兩種情況判斷方程的解的情況.【詳解】∵直線不經(jīng)過第二象限,∴,∵方程,當a=0時,方程為一元一次方程,故有一個解,當a<0時,方程為一元二次方程,∵?=,∴4-4a>0,∴方程有兩個不相等的實數(shù)根,故選:D.【考點】此題考查一次函數(shù)的性質(zhì):利用函數(shù)圖象經(jīng)過的象限判斷字母的符號,方程的解的情況,注意易錯點是a的取值范圍,再分類討論.二、多選題1、BD【解析】【分析】根據(jù)四邊相等的四邊形是菱形即可判斷.【詳解】解:由作圖可知:AC=AD=BC=BD,∴四邊形ADBC是菱形且為平行四邊形,故選:BD.【考點】本題考查基本作圖,平行四邊形的判定,菱形的判定等知識,解題的關鍵是熟練掌握五種基本作圖,屬于中考常考題型.2、ACD【解析】【分析】根據(jù)矩形的性質(zhì)得到:矩形的對角線相等且互相平分,根據(jù)矩形的判定:對角線相等且互相平分且相等的四邊形是矩形,進行逐一判斷即可.【詳解】A.矩形的對角線互相平分,且相等,但不一定互相垂直,說法錯誤,本選項符合題意;B.矩形的對角線相等且互相平分,說法正確,本選項不符合題意;C.對角線相等的四邊形不一定為矩形,例如等腰梯形對角線相等,但不是矩形,說法錯誤,本選項符合題意;D.對角線互相平分的四邊形為平行四邊形,不一定為矩形,說法錯誤,本選項符合題意;故選ACD.【考點】考查矩形的判定與性質(zhì),熟練掌握矩形的判定定理與性質(zhì)定理是解決問題的關鍵.3、ABD【解析】【分析】利用可得,從而得到,解出k結(jié)合根的判別式即可求解.【詳解】解:∵于的一元二次方程的兩個實數(shù)根分別是,,∴,∵,∴,即,解得:,當時,,∴此時方程無實數(shù)根,不合題意,舍去,當時,,∴此時方程有兩個不相等實數(shù)根,∴的值為.故選:ABD.【考點】本題主要考查了一元二次方程根與系數(shù)的關系,熟練掌握若一元二次方程的兩個實數(shù)根分別是,,則是解題的關鍵.三、填空題1、

52cm

120cm2【解析】【分析】根據(jù)菱形對角線互相平分且垂直得到邊長,從而計算出周長,再根據(jù)面積公式計算出面積.【詳解】解:∵菱形的對角線長分別為24cm和10cm,∴對角線的一半長分別為12cm和5cm,∴菱形的邊長為:=13cm,∴菱形的周長為:13×4=52cm,面積為:×10×24=120cm2.故答案為:52cm,120cm2.【考點】此題主要考查學生對菱形的性質(zhì)的理解及運用,屬于基礎題,關鍵是掌握菱形的面積等于對角線乘積的一半.2、x=或x=2【解析】【分析】根據(jù)一元二次方程的解法解出答案即可.【詳解】當x-2=0時,x=2,當x-2≠0時,4x=1,x=,故答案為:x=或x=2.【考點】本題考查解一元二次方程,本題關鍵在于分情況討論.3、【解析】【分析】由折疊的性質(zhì)和矩形的性質(zhì)可得∠HEF=90°,EA=EB=3,證明△HNG≌△FME,求出HF,設AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【詳解】解:∵四邊形ABCD是矩形,∴∠A=∠B=∠D=90°,由折疊可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,F(xiàn)B=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四邊形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,設AH=x,則HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案為:.【考點】本題考查了翻折變換,矩形的性質(zhì),勾股定理,全等三角形的判定和性質(zhì),利用勾股定理列出方程是本題的關鍵.4、【解析】【分析】根據(jù)題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【詳解】根據(jù)題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【考點】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、【解析】【分析】連接AC交BD于H,證明DCH≌DCF,得出DH的長度,再根據(jù)菱形的性質(zhì)得出BD的長度.【詳解】解:如圖,連接AC交BD于點H,由菱形的性質(zhì)得∠BDC=35,∠DCE=70,又∵∠MCE=15,∴∠DCF=55,∵DF⊥CM,∴∠CDF=35,又∵四邊形ABCD是菱形,∴BD平分∠ADC,∴∠HDC=35,在CDH和CDF中,∴CDH≌CDF(AAS),∴,∴DB=,故答案為.【考點】本題主要考查菱形的性質(zhì)和全等三角形的判定,菱形的對角線互相平分是此題的關鍵知識點,得出∠HDC=∠FDC是這個題最關鍵的一點.6、【解析】【分析】設每件襯衫降價x元,根據(jù)每件襯衫每降價1元,商場平均每天可多售出2件可得銷售量為,則每件襯衫的利潤為,根據(jù)銷售量乘以每件襯衫的利潤等于1200元,列出一元二次方程即可【詳解】解:設每件襯衫降價x元,根據(jù)題意得,故答案為:【考點】本題考查了一元二次方程的應用,根據(jù)題意列出一元二次方程是解題的關鍵.7、

cm2【解析】【分析】先求出BD的長,再根據(jù)勾股定理求出AB的長,進而可得出結(jié)論.【詳解】∵DF=6cm,已知小正方形DEFG向東北方向平移3cm就得到正方形D′E′BG′,∴BD=6+3=9.∵四邊形ABCD是正方形,∴2AB2=BD2,即AB2=BD2==(cm2).【考點】本題考查的知識點是平移的性質(zhì),解題關鍵是利用正方形性質(zhì)進行解答.8、【解析】【分析】連結(jié)AF,利用中位線的性質(zhì)GH=AF,要使GH最小,只要AF最小,由點F在BC,當AF⊥BC時,AF最小,利用菱形性質(zhì)求出,由確定△ABF為等腰直角三角形,得出AF=BF,由勾股定理得:求出AF即可.【詳解】連結(jié)AF,∵,分別為,的中點,∴GH∥AF,且GH=AF,要使GH最小,只要AF最小,由點F在BC,當AF⊥BC時,AF最小,在菱形中,,∴,在Rt△ABF中,,∴△ABF為等腰直角三角形,∴AF=BF,由勾股定理得:,∴,∴,GH最小=AF=.故答案為:.【考點】本題考查動點圖形中的中位線,菱形的性質(zhì),等腰直角三角形的性質(zhì),勾股定理應用問題,掌握中位線的性質(zhì),菱形性質(zhì),等腰直角三角形的性質(zhì),點F在BC上,AF最短,點A到BC直線的距離最短時由點A向直線BC作垂線,垂線段AF為最短是解題關鍵.9、

【解析】【分析】由角平分線的性質(zhì)與平行線的性質(zhì),可得∠EAD=∠DAF=∠ADE,進而可得AE=DE,由菱形的判定方法即可得答案,由前面的條件下和正方形的判定方法:有一個角是直角的菱形是正方形即可得問題答案.【詳解】根據(jù)題意,,,則四邊形AEDF是平行四邊形,又∵AD是△ABC的角平分線,∴∠EAD=∠DAF=∠ADE,則AE=DE,即四邊形AEDF是菱形;∵四邊形AEDF是菱形;∴當時,四邊形AEDF是正方形,故答案為菱,.【考點】本題主要考查菱形的判定與性質(zhì),正方形的判定,解此題的關鍵在于熟練掌握其知識點.10、【解析】【分析】求出BE的長,再根據(jù)兩組對邊分別平行的四邊形是平行四邊形求出四邊形EFCH是平行四邊形,根據(jù)平行四邊形的對邊相等可得EF=CH,再根據(jù)正方形的性質(zhì)可得AB=BC,AE=EF,然后求出BH=BE即可得解.【詳解】∵AB=4,AE=1,∴BE=AB?AE=4?1=3,∵四邊形ABCD,AEFG都是正方形,∴AD∥EF∥BC,又∵EH∥FC,∴四邊形EFCH平行四邊形,∴EF=CH,∵四邊形ABCD,AEFG都是正方形,∴AB=BC,AE=EF,∴AB?AE=BC?CH,∴BE=BH=3.故答案為3.【考點】本題主要考查正方形和平行四邊形,掌握正方形與平行四邊形的判定與性質(zhì)是解題的關鍵.四、解答題1、(1)k>﹣;(2)x1=﹣3,x2=2.【解析】【分析】(1)根據(jù)判別式的意義得△=12-4×1(-k)=1+4k>0,然后解不等式即可;(2)利用因式分解法解一元二次方程即可.【詳解】(1)∵方程有兩個不相等的實數(shù)根,∴△=12﹣4×1(﹣k)=1+4k>0,解得:k>﹣;(2)把k=6代入原方程得:x2+x=6,整理得:x2+x﹣6=0,分解因式得:(x+3)(x﹣2)=0,解得:x1=﹣3,x2=2.【考點】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與Δ=b2-4ac有如下關系:當Δ>0時,方程有兩個不相等的實數(shù)根;當Δ=0時,方程有兩個相等的實數(shù)根;當Δ<0時,方程無實數(shù)根;也考查了解一元二次方程.2、(1)見解析(2)①3;②6【解析】【分析】(1)利用AAS證△NDE≌△MAE,得出NE=ME,進而得出結(jié)論;(2)①當四邊形AMDN是矩形時∠AMD=90°,由菱形的性質(zhì)得AD=6,進而求出AM的值;②當四邊形AMDN是菱形時,AM=DM,由∠DAB=60°,得出△AMD為等邊三角形,進而求出AM的值.(1)證明:∵四邊形ABCD是菱形∴AB∥CD∴∠DNE=∠AME,∠NDE=∠MAE∵點E是AD邊的中點∴AE=DE∴△NDE≌△MAE(AAS)∴NE=ME∴四邊形AMDN是平行四邊形(2)解:①當四邊形AMDN是矩形時∠AMD=90°在菱形ABCD中AD=AB=6∵∠DAB=60°∴∠ADM=30°∴AM=AD=3故答案為:3.②當四邊形AMDN是菱形時,AM=DM∵∠DAB=60°∴△AMD為等邊三角形∴AM=AD在菱形ABCD中AD=AB=6∴AM=6故答案為:6.【考點】本題考查平行四邊形的判定,矩形和菱形的性質(zhì),等邊三角形的性質(zhì),30°的直角三角形的性質(zhì),熟練地掌握平行四邊的判定方法和矩形菱形的性質(zhì)是解決問題的關鍵.3、(1)見解析;(2)AB=AC或【解析】【分析】(1)根據(jù)三角形中位線定理和平行四邊形的判定和性質(zhì)解答即可;(2)根據(jù)矩形的判定解答即可.【詳解】(1)∵是的中線,∴,∵,∴,∵,∴四邊形是平行四邊形,∴(2)當△ABC滿足AB=AC或時,四邊形ADCE是矩形,∴AE=CD,∵AE∥BC,∴四邊形ADCE是平行四邊形,∵AB=DE,∴當AB=AC或時,AC=DE,∴四邊形ADCE是矩形.【考點】此題考查了平行四邊形的判定與性質(zhì)、等腰三角形的性質(zhì)以及矩形的判定.此題難度適中,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論