2022吉林省和龍市中考數(shù)學(xué)題庫含答案詳解【典型題】_第1頁
2022吉林省和龍市中考數(shù)學(xué)題庫含答案詳解【典型題】_第2頁
2022吉林省和龍市中考數(shù)學(xué)題庫含答案詳解【典型題】_第3頁
2022吉林省和龍市中考數(shù)學(xué)題庫含答案詳解【典型題】_第4頁
2022吉林省和龍市中考數(shù)學(xué)題庫含答案詳解【典型題】_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省和龍市中考數(shù)學(xué)題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、距考試還有20天的時間,為鼓舞干勁,老師要求班上每一名同學(xué)要給同組的其他同學(xué)寫一份拼搏進取的留言,小明所在的小組共寫了30份留言,該小組共有()A.7人 B.6人 C.5人 D.4人2、用配方法解方程時,原方程應(yīng)變形為(

)A. B. C. D.3、一元二次方程,用配方法解該方程,配方后的方程為()A. B.C. D.4、正方形的邊長為4,若邊長增加x,那么面積增加y,則y關(guān)于x的函數(shù)表達式為(

)A. B. C. D.5、二次函數(shù)的圖像如圖所示,現(xiàn)有以下結(jié)論:(1):(2);(3),(4);(5);其中正確的結(jié)論有(

)A.2個 B.3個 C.4個 D.5個.二、多選題(5小題,每小題3分,共計15分)1、下列四個說法中,不正確的是(

)A.一元二次方程有實數(shù)根B.一元二次方程有實數(shù)根C.一元二次方程有實數(shù)根D.一元二次方程x2+4x+5=a(a≥1)有實數(shù)根2、如圖是拋物線的一部分,拋物線的頂點坐標(biāo)是A(1,3),與x軸的一個交點是B(4,0),點P在拋物線上,且在直線AB上方,則下列結(jié)論正確的是(

)A. B.方程有兩個相等的實根C. D.點P到直線AB的最大距離3、下列說法中,正確的有()A.等弧所對的圓心角相等B.經(jīng)過三點可以作一個圓C.平分弦的直徑垂直于這條弦D.圓的內(nèi)接平行四邊形是矩形4、如圖,AB是的直徑,C是上一點,E是△ABC的內(nèi)心,,延長BE交于點F,連接CF,AF.則下列結(jié)論正確的是(

)A. B.C.△AEF是等腰直角三角形 D.若,則5、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點D、E.連接DE、OE.下列結(jié)論中正確的結(jié)論是()A.BC=2DE B.D點到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.2、如圖,在一塊長12m,寬8m的矩形空地上,修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條平行),剩余部分栽種花草,且栽種花草的面積77m2,設(shè)道路的寬為xm,則根據(jù)題意,可列方程為_______.3、平面直角坐標(biāo)系中,,,A為x軸上一動點,連接AC,將AC繞A點順時針旋轉(zhuǎn)90°得到AB,當(dāng)BK取最小值時,點B的坐標(biāo)為_________.4、要利用一面很長的圍墻和100米長的隔離欄建三個如圖所示的矩形羊圈,若計劃建成的三個羊圈總面積為400平方米,則羊圈的邊長AB為多少米?設(shè)AB=x米,根據(jù)題意可列出方程的為_________.5、小亮同學(xué)在探究一元二次方程的近似解時,填好了下面的表格:根據(jù)以上信息請你確定方程的一個解的范圍是________.四、簡答題(2小題,每小題10分,共計20分)1、解方程與計算(1)

(2)計算:.2、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設(shè)點M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應(yīng)點F恰好落在y軸上時,請直接寫出點P的坐標(biāo).五、解答題(4小題,每小題10分,共計40分)1、小明和小麗先后從A地出發(fā)同一直道去B地,設(shè)小麗出發(fā)第時,小麗、小明離B地的距離分別為、,與x之間的數(shù)表達式,與x之間的函數(shù)表達式是.(1)小麗出發(fā)時,小明離A地的距離為.(2)小麗發(fā)至小明到達B地這段時間內(nèi),兩人何時相距最近?最近距離是多少?2、下面是“過圓外一點作圓的切線”的尺規(guī)作圖過程.已知:⊙O和⊙O外一點P.求作:過點P的⊙O的切線.作法:如圖,(1)連接OP;(2)分別以點O和點P為圓心,大于的長半徑作弧,兩弧相交于M,N兩點;(3)作直線MN,交OP于點C;(4)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點;(5)作直線PA,PB.直線PA,PB即為所求作⊙O的切線完成如下證明:證明:連接OA,OB,∵OP是⊙C直徑,點A在⊙C上∴∠OAP=90°(___________)(填推理的依據(jù)).∴OA⊥AP.又∵點A在⊙O上,∴直線PA是⊙O的切線(___________)(填推理的依據(jù)).同理可證直線PB是⊙O的切線.3、正方形綠化場地擬種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對稱或中心對稱圖案,下面是三種不同設(shè)計方案中的一部分.(1)請把圖①、圖②補成既是軸對稱圖形,又是中心對稱圖形,并畫出一條對稱軸;(2)把圖③補成只是中心對稱圖形,并把中心標(biāo)上字母P.4、已知關(guān)于x的一元二次方程有兩個相等的實數(shù)根,求的值.-參考答案-一、單選題1、B【解析】【分析】設(shè)小組有x人,根據(jù)題意,得x(x-1)=30,解方程即可.【詳解】設(shè)小組有x人,根據(jù)題意,得x(x-1)=30,整理,得,解方程,得(舍去),故選B.【考點】本題考查了一元二次方程的應(yīng)用,熟練掌握方程的應(yīng)用是解題的關(guān)鍵.2、D【解析】【分析】移項,配方,變形后即可得出選項.【詳解】解:x2-4x=1,x2-4x+4=1+4,∴(x-2)2=5,故選:D.【考點】本題考查了解一元二次方程,能夠正確配方是解此題的關(guān)鍵.3、D【解析】【分析】按照配方法的步驟,移項,配方,配一次項系數(shù)一半的平方.【詳解】∵x2?2x?m=0,∴x2?2x=m,∴x2?2x+1=m+1,∴(x?1)2=m+1.故選D.【考點】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準(zhǔn)確使用.4、C【解析】【分析】加的面積=新正方形的面積-原正方形的面積,把相關(guān)數(shù)值代入化簡即可.【詳解】解:∵新正方形的邊長為x+4,原正方形的邊長為4,∴新正方形的面積為(x+4)2,原正方形的面積為16,∴y=(x+4)2-16=x2+8x,故選:C.【考點】本題考查列二次函數(shù)關(guān)系式;得到增加的面積的等量關(guān)系是解決本題的關(guān)鍵.5、C【解析】【分析】由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】解:(1)∵函數(shù)開口向下,∴a<0,∵對稱軸在y軸的右邊,∴,∴b>0,故命題正確;(2)∵a<0,b>0,c>0,∴abc<0,故命題正確;(3)∵當(dāng)x=-1時,y<0,∴a-b+c<0,故命題錯誤;(4)∵當(dāng)x=1時,y>0,∴a+b+c>0,故命題正確;(5)∵拋物線與x軸于兩個交點,∴b2-4ac>0,故命題正確;故選C.【考點】本題考查了二次函數(shù)圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.二、多選題1、ABC【解析】【分析】判斷上述方程的根的情況,只要看根的判別式△的值的符號就可以了.【詳解】解:、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程有實數(shù)根,正確,不符合題意;故選:ABC.【考點】本題考查了一元二次方程根的情況與判別式△的關(guān)系:解題的關(guān)鍵是掌握(1)△方程有兩個不相等的實數(shù)根;(2)△方程有兩個相等的實數(shù)根;(3)△方程沒有實數(shù)根.2、BCD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、坐標(biāo)系內(nèi)直線的平移、利用配方法求二次三項式的最值即可一一判斷.【詳解】解:由圖象可知,,則,故A選項錯誤;由圖象可知,直線與拋物線只有一個交點,則方程有兩個相等的實根,故B選項正確;當(dāng)時,拋物線由最大值,則,即,故C選項正確;設(shè)直線AB的表達式為,且A(1,3),B(4,0)在直線上,則,解得,,即,由拋物線的對稱軸為得,則,即,又A(1,3),B(4,0)在拋物線上,則,解得,,將直線向上平移與拋物線有一個交點時至,要求點P到直線AB的最大距離,即點P為直線與拋物線的交點,過點作于,軸,如圖所示,由直線AB可得,為等腰直角三角形,又直線由直線平移得到,且軸,,,是等腰直角三角形,由平移的性質(zhì)可設(shè)直線的表達式為,當(dāng)與拋物線有一個交點時,即,整理得,由于只有一個交點,則,解得,即直線AB向上平移了:,則,則,點P到直線AB的最大距離,故D選項正確,故選BCD.【考點】本題考查了二次函數(shù)的圖象及性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、平面直角坐標(biāo)系內(nèi)直線的平移,解題的關(guān)鍵學(xué)會利用函數(shù)圖象解決問題,靈活運用相關(guān)知識解決問題,本題難點在于要求拋物線上的點到直線的最大距離即求直線平移至與拋物線有一個交點時交點到直線的距離.3、AD【解析】【分析】根據(jù)圓的有關(guān)概念及性質(zhì),對選項逐個判斷即可.【詳解】解:A.等弧是能夠完全重合的弧,因此等弧所對的圓心角相等,正確,符合題意;B.經(jīng)過不在同一直線上的三點可以作一個圓,故原命題錯誤,不符合題意;C.平分弦(不是直徑)的直徑垂直于這條弦,故原命題錯誤,不符合題意;D.圓的內(nèi)接平行四邊形是矩形,正確,符合題意,正確的有A、D,故答案為:A、D.【考點】此題考查了圓的有關(guān)概念及性質(zhì),解題的關(guān)鍵是熟練掌握圓的相關(guān)概念以及性質(zhì).4、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關(guān)鍵.5、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當(dāng)重合,時,可得:<可得C不一定成立,根據(jù)切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數(shù)為∵的度數(shù)為∴的度數(shù)為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個定值,因而B正確,符合題意;如圖:當(dāng)重合,時,則為的切線,同理可得:此時則為的直徑,>此時<所以C不符合題意;與的外接圓有兩個交點,不是外接圓的切線,所以D不符合題意;故選:AB.【考點】本題考查的是圓的基本性質(zhì),圓弧的度數(shù)與其所對的圓周角的度數(shù)之間的關(guān)系,切線的概念的理解,等邊三角形的判定與性質(zhì),靈活運用以上知識解題是解題的關(guān)鍵.三、填空題1、4【解析】【分析】由A、B坐標(biāo)可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的頂點坐標(biāo),表示出b、c的值是解題的關(guān)鍵.2、(12-x)(8-x)=77【解析】【分析】道路外的四塊土地拼到一起正好構(gòu)成一個矩形,矩形的長和寬分別是(12-x)和(8-x),根據(jù)矩形的面積公式,列出關(guān)于道路寬的方程求解.【詳解】道路的寬為x米.依題意得:(12-x)(8-x)=77,故答案為(12-x)(8-x)=77.【考點】本題考查了一元二次方程的應(yīng)用,關(guān)鍵將四個矩形用恰當(dāng)?shù)姆绞狡闯纱缶匦瘟谐龅攘筷P(guān)系.3、【分析】如圖,作BH⊥x軸于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出點B在直線y=x﹣4上運動,設(shè)直線y=x﹣4交x軸于E,交y軸于F,作KM⊥EF于M,根據(jù)垂線段最短可知,當(dāng)點B與點M重合時,BK的值最小,利用等腰直角三角形的性質(zhì)可得M的坐標(biāo),從而可得答案.【詳解】解:如圖,作BH⊥x軸于H.∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴點B在直線y=x﹣4上運動,設(shè)直線y=x﹣4交x軸于E,交y軸于F,則作KM⊥EF于M,過作于則根據(jù)垂線段最短可知,當(dāng)點B與點M重合時,BK的值最小,此時B(3,﹣1),故答案為:(3,﹣1)【點睛】本題考查坐標(biāo)與圖形的變化﹣旋轉(zhuǎn),全等三角形的判定和性質(zhì),一次函數(shù)的應(yīng)用,垂線段最短等知識,解題的關(guān)鍵是正確尋找點B的運動軌跡,學(xué)會利用垂線段最短解決最短問題.4、x(100-4x)=400【解析】【分析】由題意,得BC的長為(100-4x)米,根據(jù)矩形面積列方程即可.【詳解】解:設(shè)AB為x米,則BC的長為(100-4x)米由題意,得x(100-4x)=400故答案為:x(100-4x)=400.【考點】本題主要考查了一元二次方程的實際問題,解決問題的關(guān)鍵是通過圖形找到對應(yīng)關(guān)系量,根據(jù)等量關(guān)系式列方程.5、【解析】【分析】觀察表格可知,隨x的值逐漸增大,ax2+bx+c的值在3.24~3.25之間由負到正,故可判斷ax2+bx+c=0時,對應(yīng)的x的值在3.24<x<3.25之間.【詳解】根據(jù)表格可知,ax2+bx+c=0時,對應(yīng)的x的值在3.24<x<3.25之間.故答案為3.24<x<3.25.【考點】本題考查了一元二次方程的知識點,解題的關(guān)鍵是根據(jù)表格求出一元二次方程的近似根.四、簡答題1、(1);(2)【解析】【分析】(1)利用配方法求解即可;(2)原式利用特殊角的三角函數(shù)值,以及零指數(shù)冪、負整數(shù)指數(shù)冪法則計算即可求出值.【詳解】解:(1)原式整理得∴∴;(2)原式=【考點】本題考查了一元二次方程的求解與三角函數(shù)的求解,熟練掌握運算法則,特殊角的三角函數(shù)是解本題的關(guān)鍵.2、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時,S有最大值,最大值為;(3)存在,點P的坐標(biāo)為(4,0)或(,0).【解析】【分析】(1)將點E代入直線解析式中,可求出點C的坐標(biāo),將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標(biāo),設(shè)直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點P的坐標(biāo),則點G的坐標(biāo)可表示,點H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時,S有最大值,最大值為.(3)存在,如圖所示,設(shè)點P的坐標(biāo)為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應(yīng)點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當(dāng)t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標(biāo)為(4,0)或(,0).【考點】此題考查了待定系數(shù)法求函數(shù)解析式,點坐標(biāo)轉(zhuǎn)換為線段

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論