2023年人教版七7年級下冊數(shù)學(xué)期末解答題壓軸題題(含答案)_第1頁
2023年人教版七7年級下冊數(shù)學(xué)期末解答題壓軸題題(含答案)_第2頁
2023年人教版七7年級下冊數(shù)學(xué)期末解答題壓軸題題(含答案)_第3頁
2023年人教版七7年級下冊數(shù)學(xué)期末解答題壓軸題題(含答案)_第4頁
2023年人教版七7年級下冊數(shù)學(xué)期末解答題壓軸題題(含答案)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年人教版七7年級下冊數(shù)學(xué)期末解答題壓軸題題(含答案)一、解答題1.(1)如圖1,分別把兩個邊長為的小正方形沿一條對角線裁成4個小三角形拼成一個大正方形,則大正方形的邊長為______;(2)若一個圓的面積與一個正方形的面積都是,設(shè)圓的周長為.正方形的周長為,則______(填“”,或“”,或“”)(3)如圖2,若正方形的面積為,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為的長方形紙片,使它的長和寬之比為,他能裁出嗎?請說明理由?2.動手試一試,如圖1,紙上有10個邊長為1的小正方形組成的圖形紙.我們可以按圖2的虛線將它剪開后,重新拼成一個大正方形.(1)基礎(chǔ)鞏固:拼成的大正方形的面積為______,邊長為______;(2)知識運用:如圖3所示,將圖2水平放置在數(shù)軸上,使得頂點B與數(shù)軸上的重合.以點B為圓心,邊為半徑畫圓弧,交數(shù)軸于點E,則點E表示的數(shù)是______;(3)變式拓展:①如圖4,給定的方格紙(每個小正方形邊長為1),你能從中剪出一個面積為13的正方形嗎?若能,請在圖中畫出示意圖;②請你利用①中圖形在數(shù)軸上用直尺和圓規(guī)表示面積為13的正方形邊長所表示的數(shù).3.有一塊面積為100cm2的正方形紙片.(1)該正方形紙片的邊長為cm(直接寫出結(jié)果);(2)小麗想沿著該紙片邊的方向裁剪出一塊面積為90cm2的長方形紙片,使它的長寬之比為4:3.小麗能用這塊紙片裁剪出符合要求的紙片嗎?4.如圖,用兩個邊長為15的小正方形拼成一個大的正方形,(1)求大正方形的邊長?(2)若沿此大正方形邊的方向剪出一個長方形,能否使剪出的長方形紙片的長寬之比為4:3,且面積為720cm2?5.如圖用兩個邊長為cm的小正方形紙片拼成一個大的正方形紙片,沿著大正方形紙片的邊的方向截出一個長方形紙片,能否使截得的長方形紙片長寬之比為,且面積為cm2?請說明理由.二、解答題6.如圖,直線HDGE,點A在直線HD上,點C在直線GE上,點B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大小;(3)如圖3,點P是線段AB上一點,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.7.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點,連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).8.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當(dāng)射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.9.如圖,,直線與、分別交于點、,點在直線上,過點作,垂足為點.(1)如圖1,求證:;(2)若點在線段上(不與、、重合),連接,和的平分線交于點請在圖2中補全圖形,猜想并證明與的數(shù)量關(guān)系;10.已知,點在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點,請利用(1)的結(jié)論說明:.(3)圖3中,的平分線與的平分線相交于點,請直接寫出與之間的數(shù)量關(guān)系.三、解答題11.閱讀下面材料:小穎遇到這樣一個問題:已知:如圖甲,為之間一點,連接,求的度數(shù).她是這樣做的:過點作則有因為所以①所以所以即_;1.小穎求得的度數(shù)為__;2.上述思路中的①的理由是__;3.請你參考她的思考問題的方法,解決問題:已知:直線點在直線上,點在直線上,連接平分平分且所在的直線交于點.(1)如圖1,當(dāng)點在點的左側(cè)時,若,則的度數(shù)為;(用含有的式子表示).(2)如圖2,當(dāng)點在點的右側(cè)時,設(shè),直接寫出的度數(shù)(用含有的式子表示).12.已知射線射線CD,P為一動點,AE平分,CE平分,且AE與CE相交于點E.(注意:此題不允許使用三角形,四邊形內(nèi)角和進行解答)(1)在圖1中,當(dāng)點P運動到線段AC上時,.直接寫出的度數(shù);(2)當(dāng)點P運動到圖2的位置時,猜想與之間的關(guān)系,并加以說明;(3)當(dāng)點P運動到圖3的位置時,(2)中的結(jié)論是否還成立?若成立,請說明理由:若不成立,請寫出與之間的關(guān)系,并加以證明.13.已知,交AC于點E,交AB于點F.(1)如圖1,若點D在邊BC上,①補全圖形;②求證:.(2)點G是線段AC上的一點,連接FG,DG.①若點G是線段AE的中點,請你在圖2中補全圖形,判斷,,之間的數(shù)量關(guān)系,并證明;②若點G是線段EC上的一點,請你直接寫出,,之間的數(shù)量關(guān)系.14.已知:和同一平面內(nèi)的點.(1)如圖1,點在邊上,過作交于,交于.根據(jù)題意,在圖1中補全圖形,請寫出與的數(shù)量關(guān)系,并說明理由;(2)如圖2,點在的延長線上,,.請判斷與的位置關(guān)系,并說明理由.(3)如圖3,點是外部的一個動點.過作交直線于,交直線于,直接寫出與的數(shù)量關(guān)系,并在圖3中補全圖形.15.(感知)如圖①,,求的度數(shù).小明想到了以下方法:解:如圖①,過點作,(兩直線平行,內(nèi)錯角相等)(已知),(平行于同一條直線的兩直線平行),(兩直線平行,同旁內(nèi)角互補).(已知),(等式的性質(zhì)).(等式的性質(zhì)).即(等量代換).(探究)如圖②,,,求的度數(shù).(應(yīng)用)如圖③所示,在(探究)的條件下,的平分線和的平分線交于點,則的度數(shù)是_______________.四、解答題16.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)17.如圖,平分,平分,請判斷與的位置關(guān)系并說明理由;如圖,當(dāng)且與的位置關(guān)系保持不變,移動直角頂點,使,當(dāng)直角頂點點移動時,問與否存在確定的數(shù)量關(guān)系?并說明理由.如圖,為線段上一定點,點為直線上一動點且與的位置關(guān)系保持不變,①當(dāng)點在射線上運動時(點除外),與有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.②當(dāng)點在射線的反向延長線上運動時(點除外),與有何數(shù)量關(guān)系?直接寫出猜想結(jié)論,不需說明理由.18.如圖1,已知線段AB、CD相交于點O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細(xì)觀察,在圖2中有個以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.19.如果三角形的兩個內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點,點在直線外,且.若是直線上一點,且是“準(zhǔn)互余三角形”,請直接寫出的度數(shù).20.如圖,已知直線a∥b,∠ABC=100°,BD平分∠ABC交直線a于點D,線段EF在線段AB的左側(cè),線段EF沿射線AD的方向平移,在平移的過程中BD所在的直線與EF所在的直線交于點P.問∠1的度數(shù)與∠EPB的度數(shù)又怎樣的關(guān)系?(特殊化)(1)當(dāng)∠1=40°,交點P在直線a、直線b之間,求∠EPB的度數(shù);(2)當(dāng)∠1=70°,求∠EPB的度數(shù);(一般化)(3)當(dāng)∠1=n°,求∠EPB的度數(shù)(直接用含n的代數(shù)式表示).【參考答案】一、解答題1.(1);(2)<;(3)不能,理由見解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長;(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長,進而可求得圓和正方形的解析:(1);(2)<;(3)不能,理由見解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長;(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長,進而可求得圓和正方形的周長,利用作商法比較這兩數(shù)大小即可;(3)利用方程思想求出長方形的長邊,與正方形邊長比較大小即可;【詳解】解:(1)∵小正方形的邊長為1cm,∴小正方形的面積為1cm2,∴兩個小正方形的面積之和為2cm2,即所拼成的大正方形的面積為2cm2,設(shè)大正方形的邊長為xcm,∴,∴∴大正方形的邊長為cm;(2)設(shè)圓的半徑為r,∴由題意得,∴,∴,設(shè)正方形的邊長為a∵,∴,∴,∴故答案為:<;(3)解:不能裁剪出,理由如下:∵正方形的面積為900cm2,∴正方形的邊長為30cm∵長方形紙片的長和寬之比為,∴設(shè)長方形紙片的長為,寬為,則,整理得:,∴,∴,∴,∴長方形紙片的長大于正方形的邊長,∴不能裁出這樣的長方形紙片.【點睛】本題通過圓和正方形的面積考查了對算術(shù)平方根的應(yīng)用,主要是對學(xué)生無理數(shù)運算及比較大小進行了考查.2.(1)10,;(2);(3)見解析;(4)見解析【分析】(1)易得10個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長;(2)根據(jù)大正方形的邊長結(jié)合實解析:(1)10,;(2);(3)見解析;(4)見解析【分析】(1)易得10個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長;(2)根據(jù)大正方形的邊長結(jié)合實數(shù)與數(shù)軸的關(guān)系可得結(jié)果;(3)以2×3的長方形的對角線為邊長即可畫出圖形;(4)得到①中正方形的邊長,再利用實數(shù)與數(shù)軸的關(guān)系可畫出圖形.【詳解】解:(1)∵圖1中有10個小正方形,∴面積為10,邊長AD為;(2)∵BC=,點B表示的數(shù)為-1,∴BE=,∴點E表示的數(shù)為;(3)①如圖所示:②∵正方形面積為13,∴邊長為,如圖,點E表示面積為13的正方形邊長.【點睛】本題考查了圖形的剪拼,正方形的面積,算術(shù)平方根,實數(shù)與數(shù)軸,巧妙地根據(jù)網(wǎng)格的特點畫出正方形是解此題的關(guān)鍵.3.(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據(jù)算術(shù)平方根的定義直接得出;(2)直接利用算術(shù)平方根的定義長方形紙片的長與寬,進而得出答案.【詳解】解:(1)根據(jù)算解析:(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據(jù)算術(shù)平方根的定義直接得出;(2)直接利用算術(shù)平方根的定義長方形紙片的長與寬,進而得出答案.【詳解】解:(1)根據(jù)算術(shù)平方根定義可得,該正方形紙片的邊長為10cm;故答案為:10;(2)∵長方形紙片的長寬之比為4:3,∴設(shè)長方形紙片的長為4xcm,則寬為3xcm,則4x?3x=90,∴12x2=90,∴x2=,解得:x=或x=-(負(fù)值不符合題意,舍去),∴長方形紙片的長為2cm,∵5<<6,∴10<2,∴小麗不能用這塊紙片裁出符合要求的紙片.【點睛】本題考查了算術(shù)平方根.解題的關(guān)鍵是掌握算術(shù)平方根的定義:一個正數(shù)的正的平方根叫這個數(shù)的算術(shù)平方根;0的算術(shù)平方根為0.也考查了估算無理數(shù)的大?。?.(1)30;(2)不能.【解析】【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正解析:(1)30;(2)不能.【解析】【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正方形的邊長是:=30;(2)設(shè)長方形紙片的長為4xcm,寬為3xcm,則4x?3x=720,解得:x=,4x==>30,所以沿此大正方形邊的方向剪出一個長方形,不能使剪出的長方形紙片的長寬之比為4:3,且面積為720cm2.故答案為(1)30;(2)不能.【點睛】本題考查算術(shù)平方根,解題的關(guān)鍵是能根據(jù)題意列出算式.5.不能截得長寬之比為,且面積為cm2的長方形紙片,見解析【分析】根據(jù)拼圖求出大正方形的邊長,再根據(jù)長方形的長、寬之比為3:2,計算長方形的長與寬進行驗證即可.【詳解】解:不能,因為大正方形紙解析:不能截得長寬之比為,且面積為cm2的長方形紙片,見解析【分析】根據(jù)拼圖求出大正方形的邊長,再根據(jù)長方形的長、寬之比為3:2,計算長方形的長與寬進行驗證即可.【詳解】解:不能,因為大正方形紙片的面積為()2+()2=36(cm2),所以大正方形的邊長為6cm,設(shè)截出的長方形的長為3bcm,寬為2bcm,則6b2=30,所以b=(取正值),所以3b=3=>,所以不能截得長寬之比為3:2,且面積為30cm2的長方形紙片.【點睛】本題考查了算術(shù)平方根,理解算術(shù)平方根的意義是正確解答的關(guān)鍵.二、解答題6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點.7.(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;解析:(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.8.(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根解析:(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時,②當(dāng)15<t≤30時,③當(dāng)30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運用方程思想解決幾何問題.9.(1)證明見解析;(2)補圖見解析;當(dāng)點在上時,;當(dāng)點在上時,.【分析】(1)過點作,根據(jù)平行線的性質(zhì)即可求解;(2)分兩種情況:當(dāng)點在上,當(dāng)點在上,再過點作即可求解.【詳解】(1)證明:解析:(1)證明見解析;(2)補圖見解析;當(dāng)點在上時,;當(dāng)點在上時,.【分析】(1)過點作,根據(jù)平行線的性質(zhì)即可求解;(2)分兩種情況:當(dāng)點在上,當(dāng)點在上,再過點作即可求解.【詳解】(1)證明:如圖,過點作,∴,∵,∴.∴.∵,∴,∴.(2)補全圖形如圖2、圖3,猜想:或.證明:過點作.∴.∵,∴∴,∴.∵平分,∴.如圖3,當(dāng)點在上時,∵平分,∴,∵,∴,即.如圖2,當(dāng)點在上時,∵平分,∴.∴.即.【點睛】本題考查了平行線的基本性質(zhì)、角平分線的基本性質(zhì)及角的運算,解題的關(guān)鍵是準(zhǔn)確作出平行線,找出角與角之間的數(shù)量關(guān)系.10.(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,解析:(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,結(jié)合(1)的結(jié)論即可說明:∠BED=2∠BFD;(3)圖3中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合(1)的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,過點E作EG∥AB,則∠BEG=∠ABE,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).三、解答題11.;2.平行于同一條直線的兩條直線平行;3.(1);(2).【分析】1、根據(jù)角度和計算得到答案;2、根據(jù)平行線的推論解答;3、(1)根據(jù)角平分線的性質(zhì)及1的結(jié)論證明即可得到答案;(2)根據(jù)B解析:;2.平行于同一條直線的兩條直線平行;3.(1);(2).【分析】1、根據(jù)角度和計算得到答案;2、根據(jù)平行線的推論解答;3、(1)根據(jù)角平分線的性質(zhì)及1的結(jié)論證明即可得到答案;(2)根據(jù)BE平分平分求出,過點E作EF∥AB,根據(jù)平行線的性質(zhì)求出∠BEF=,,再利用周角求出答案.【詳解】1、過點作則有因為所以①所以所以即;故答案為:;2、過點作則有因為所以EF∥CD(平行于同一條直線的兩條直線平行),故答案為:平行于同一條直線的兩條直線平行;3、(1)∵BE平分平分∴,過點E作EF∥AB,由1可得∠BED=,∴∠BED=,故答案為:;(2)∵BE平分平分∴,過點E作EF∥AB,則∠ABE=∠BEF=,∵∴EF∥CD,∴,∴,∴.【點睛】此題考查平行線的性質(zhì):兩直線平行內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,平行線的推論,正確引出輔助線是解題的關(guān)鍵.12.(1);(2),證明見解析;(3),證明見解析.【分析】(1)過點作,先根據(jù)平行線的性質(zhì)、平行公理推論可得,從而可得,再根據(jù)平行線的性質(zhì)可得,然后根據(jù)角平分線的定義可得,最后根據(jù)角的和差即可得;解析:(1);(2),證明見解析;(3),證明見解析.【分析】(1)過點作,先根據(jù)平行線的性質(zhì)、平行公理推論可得,從而可得,再根據(jù)平行線的性質(zhì)可得,然后根據(jù)角平分線的定義可得,最后根據(jù)角的和差即可得;(2)過點作,過點作,先根據(jù)(1)可得,再根據(jù)(1)同樣的方法可得,由此即可得出結(jié)論;(3)過點作,過點作,先根據(jù)(1)可得,再根據(jù)平行線的性質(zhì)、平行公理推論可得,然后根據(jù)角的和差、等量代換即可得出結(jié)論.【詳解】解:(1)如圖,過點作,,,,,,又,且點運動到線段上,,平分,平分,,;(2)猜想,證明如下:如圖,過點作,過點作,由(1)已得:,同理可得:,;(3),證明如下:如圖,過點作,過點作,由(1)已得:,即,,,即,,,,即,,,,,即.【點睛】本題考查了平行線的性質(zhì)、平行公理推論、角平分線的定義等知識點,熟練掌握平行線的性質(zhì)是解題關(guān)鍵.13.(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠解析:(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,進而得出∠EDF=∠A;(2)①過G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②過G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【詳解】解:(1)①如圖,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如圖2所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如圖所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【點睛】本題考查了平行線的判定和性質(zhì):兩直線平行,內(nèi)錯角相等.正確的作出輔助線是解題的關(guān)鍵.14.(1)圖見解析,,理由見解析;(2),理由見解析;(3)圖見解析,或.【分析】(1)根據(jù)平行線的畫法補全圖形即可得,根據(jù)平行線的性質(zhì)可得,由此即可得;(2)如圖(見解析),先根據(jù)平行線的性質(zhì)可解析:(1)圖見解析,,理由見解析;(2),理由見解析;(3)圖見解析,或.【分析】(1)根據(jù)平行線的畫法補全圖形即可得,根據(jù)平行線的性質(zhì)可得,由此即可得;(2)如圖(見解析),先根據(jù)平行線的性質(zhì)可得,再根據(jù)等量代換可得,然后根據(jù)平行線的判定即可得;(3)先根據(jù)點D的位置畫出如圖(見解析)的兩種情況,再分別利用平行線的性質(zhì)、對頂角相等即可得.【詳解】(1)由題意,補全圖形如下:,理由如下:,,,,;(2),理由如下:如圖,延長BA交DF于點O,,,,,;(3)由題意,有以下兩種情況:①如圖3-1,,理由如下:,,,,,由對頂角相等得:,;②如圖3-2,,理由如下:,,,,.【點睛】本題考查了平行線的判定與性質(zhì)等知識點,較難的是題(3),正確分兩種情況討論是解題關(guān)鍵.15.[探究]70°;[應(yīng)用]35【分析】[探究]如圖②,根據(jù)AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度數(shù).[應(yīng)用]如圖③所示,在[探究]的條件下,根據(jù)∠PEA的平分線解析:[探究]70°;[應(yīng)用]35【分析】[探究]如圖②,根據(jù)AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度數(shù).[應(yīng)用]如圖③所示,在[探究]的條件下,根據(jù)∠PEA的平分線和∠PFC的平分線交于點G,可得∠G的度數(shù).【詳解】解:[探究]如圖②,過點P作PM∥AB,∴∠MPE=∠AEP=50°(兩直線平行,內(nèi)錯角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一條直線的兩直線平行),∴∠PFC=∠MPF=120°(兩直線平行,內(nèi)錯角相等).∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性質(zhì)).答:∠EPF的度數(shù)為70°;[應(yīng)用]如圖③所示,∵EG是∠PEA的平分線,PG是∠PFC的平分線,∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,過點G作GM∥AB,∴∠MGE=∠AEG=25°(兩直線平行,內(nèi)錯角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一條直線的兩直線平行),∴∠GFC=∠MGF=60°(兩直線平行,內(nèi)錯角相等).∴∠G=∠MGF-MGE=60°-25°=35°.答:∠G的度數(shù)是35°.故答案為:35.【點睛】本題考查了平行線的判定與性質(zhì)、平行公理及推論,解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).四、解答題16.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過E點,F(xiàn)點,G點,H點作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過點O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點睛:本題考查了平行線的性質(zhì),角平分線的定義,解決此類題目,過拐點作平行線是解題的關(guān)鍵,準(zhǔn)確識圖理清圖中各角度之間的關(guān)系也很重要.17.(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結(jié)論;(2)過E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論;(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.試題解析:證明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+∠MCD=90°.證明如下:過E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如圖3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如圖4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.點睛:本題考查了平行線的性質(zhì),根據(jù)題意作出平行線是解答此題的關(guān)鍵.18.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O(shè)為交點的“8字形”有2個;(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O(shè)為交點的“8字形”有2個;(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據(jù)四邊形內(nèi)角和為360°可得答案.【詳解】解:(1)在圖2中有3個以線段AC為邊的“8字形”,故答案為3;(2)∵∠CAB和∠BDC的平分線AP和DP相交于點P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論