版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
云南省彌勒市中考數(shù)學考試黑鉆押題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、直線不經(jīng)過第二象限,則關于的方程實數(shù)解的個數(shù)是(
).A.0個 B.1個 C.2個 D.1個或2個2、方程y2=-a有實數(shù)根的條件是(
)A.a(chǎn)≤0 B.a(chǎn)≥0 C.a(chǎn)>0 D.a(chǎn)為任何實數(shù)3、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為(
)A.1個 B.2個 C.3個 D.4個4、下列各點中,關于原點對稱的兩個點是()A.(﹣5,0)與(0,5) B.(0,2)與(2,0)C.(﹣2,﹣1)與(﹣2,1) D.(2,﹣1)與(﹣2,1)5、二次函數(shù)的頂點坐標為,圖象如圖所示,有下列四個結(jié)論:①;②;③④,其中結(jié)論正確的個數(shù)為(
)A.個 B.個 C.個 D.個二、多選題(5小題,每小題3分,共計15分)1、二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論中正確的有()A.4a+b=0B.9a+c>﹣3bC.7a﹣3b+2c>0D.若點A(﹣3,y1)、點B(﹣,y2)、點C(7,y3)在該函數(shù)圖象上,則y1<y3<y2E.若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x22、一個兩位數(shù),十位數(shù)字與個位數(shù)字之和是5,把這個數(shù)的個位數(shù)字與十位數(shù)字對調(diào)后,所得的新的兩位數(shù)與原來的兩位數(shù)的乘積是736,原來的兩位數(shù)是(
)A.23 B.32 C. D.3、下面一元二次方程的解法中,不正確的是(
)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=14、如圖,的內(nèi)切圓(圓心為點O)與各邊分別相切于點D,E,F(xiàn),連接.以點B為圓心,以適當長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線.下列說法正確的是(
)A.射線一定過點O B.點O是三條中線的交點C.若是等邊三角形,則 D.點O不是三條邊的垂直平分線的交點5、下列關于圓的敘述正確的有()A.對角互補的四邊形是圓內(nèi)接四邊形B.圓的切線垂直于圓的半徑C.正多邊形中心角的度數(shù)等于這個正多邊形一個外角的度數(shù)D.過圓外一點所畫的圓的兩條切線長相等第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在一塊長12m,寬8m的矩形空地上,修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條平行),剩余部分栽種花草,且栽種花草的面積77m2,設道路的寬為xm,則根據(jù)題意,可列方程為_______.2、過年時包了100個餃子,其中有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是_____.3、如圖,在中,,是內(nèi)的一個動點,滿足.若,,則長的最小值為_______.4、如圖,在甲,,,,以點為圓心,的長為半徑作圓,交于點,交于點,陰影部分的面積為__________(結(jié)果保留).5、如圖,正三角形ABC的邊長為,D、E、F分別為BC,CA,AB的中點,以A,B,C三點為圓心,長為半徑作圓,圖中陰影部分面積為______.四、簡答題(2小題,每小題10分,共計20分)1、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?2、如圖,在平面直角坐標系中,點為坐標原點.拋物線交軸于、兩點,交軸于點,直線經(jīng)過、兩點.(1)求拋物線的解析式;(2)過點作直線軸交拋物線于另一點,過點作軸于點,連接,求的值.五、解答題(4小題,每小題10分,共計40分)1、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動,且保持,的中點在運動過程中構(gòu)成什么圖形,請說明理由.2、如圖是兩條互相垂直的街道,且A到B,C的距離都是4千米.現(xiàn)甲從B地走向A地,乙從A地走向C地,若兩人同時出發(fā)且速度都是4千米/時,問何時兩人之間的距離最近?3、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當BF+CE最小時,直接出的值.4、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經(jīng)過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.-參考答案-一、單選題1、D【解析】【分析】根據(jù)直線不經(jīng)過第二象限,得到,再分兩種情況判斷方程的解的情況.【詳解】∵直線不經(jīng)過第二象限,∴,∵方程,當a=0時,方程為一元一次方程,故有一個解,當a<0時,方程為一元二次方程,∵?=,∴4-4a>0,∴方程有兩個不相等的實數(shù)根,故選:D.【考點】此題考查一次函數(shù)的性質(zhì):利用函數(shù)圖象經(jīng)過的象限判斷字母的符號,方程的解的情況,注意易錯點是a的取值范圍,再分類討論.2、A【解析】【分析】根據(jù)平方的非負性可以得出﹣a≥0,再進行整理即可.【詳解】解:∵方程y2=﹣a有實數(shù)根,∴﹣a≥0(平方具有非負性),∴a≤0;故選:A.【考點】此題考查了直接開平方法解一元二次方程,關鍵是根據(jù)已知條件得出﹣a≥0.3、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側(cè),得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項①錯誤;②把代入中得,所以②正確;③由時對應的函數(shù)值,可得出,得到,由,,,得到,選項③正確;④由對稱軸為直線,即時,有最小值,可得結(jié)論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側(cè),∴,∵拋物線與軸交于負半軸,∴,∴,①錯誤;②當時,,∴,∵,∴,把代入中得,所以②正確;③當時,,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時,函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次項系數(shù)決定拋物線的開口方向和大小.當時,拋物線向上開口;當時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當與同號時,對稱軸在軸左;當與異號時,對稱軸在軸右.常數(shù)項決定拋物線與軸交點:拋物線與軸交于.拋物線與軸交點個數(shù)由判別式確定:時,拋物線與軸有2個交點;時,拋物線與軸有1個交點;時,拋物線與軸沒有交點.4、D【分析】根據(jù)關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù),可得答案.【詳解】解:A、(﹣5,0)與(0,5)橫、縱坐標不滿足關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù)的特征,故A錯誤;B、(0,2)與(2,0)橫、縱坐標不滿足關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù)的特征,故B錯誤;C、(﹣2,﹣1)與(﹣2,1)關于x軸對稱,故C錯誤;D、關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù),故D正確;故選:D.【點睛】本題考查了關于原點對稱的點的坐標,關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù).5、A【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)和已知條件,對每一項逐一進行判斷即可.【詳解】解:由圖像可知a<0,c>0,∵對稱軸在正半軸,∴>0,∴b>0,∴,故①正確;當x=2時,y>0,故,故③正確;函數(shù)解析式為:y=a(x-1)2+2=ax2-2ax+a+2假設成立,結(jié)合解析式則有a+2<,解得a<,故②,④正確;故選:A.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系,結(jié)合圖象,運用所學知識是解題關鍵.二、多選題1、ABE【解析】【分析】根據(jù)拋物線的對稱軸為直線x=2,則有4a+b=0,可得A正確;根據(jù)二次函數(shù)的對稱性得到當x=3時,函數(shù)值大于0,則9a+3b+c>0,即9a+c>﹣3b,可得B正確;由于x=﹣1時,y=0,則a﹣b+c=0,易得c=﹣5a,所以7a-3b+2c=9a,再根據(jù)拋物線開口向下得a<0,于是有7a﹣3b+2c<0,可得C錯誤;利用拋物線的對稱性得到(﹣3,)在拋物線上,然后利用二次函數(shù)的增減性可得D錯誤;作出直線y=﹣3,然后依據(jù)函數(shù)圖象進行判斷可得E正確;綜上即可得答案.【詳解】A項:∵x==2,∴4a+b=0,故A正確.B項:∵拋物線與x軸的一個交點為(-1,0),對稱軸為直線x=2,∴另一個交點為(5,0),∵拋物線開口向下,∴當x=3時,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故B正確.C項:∵拋物線與x軸的一個交點為(﹣1,0),∴a﹣b+c=0∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵拋物線開口向下,∴a<0,∴7a﹣3b+2c<0,故C錯誤;D項:∵拋物線的對稱軸為x=2,C(7,)在拋物線上,∴點(﹣3,)與C(7,)關于對稱軸x=2對稱,∵A(﹣3,)在拋物線上,∴=,∵﹣3<﹣12,在對稱軸的左側(cè),拋物線開口向下,∴y隨x的增大而增大,∴=<,故D錯誤.E項:方程a(x+1)(x﹣5)=0的兩根為x=﹣1或x=5,過y=﹣3作x軸的平行線,直線y=﹣3與拋物線的交點的橫坐標為方程的兩根,∵<,拋物線與x軸交點為(-1,0),(5,0),∴依據(jù)函數(shù)圖象可知:<﹣1<5<,故E正確.故答案為:ABE【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.2、AB【解析】【分析】設原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,根據(jù)所得到的新兩位數(shù)與原來的兩位數(shù)的乘積為736,可列出方程求解即可.【詳解】解:設原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,依題意可得:,解得:,,當時,,符合題意,原來的兩位數(shù)是23,當時,,符合題意,原來的兩位數(shù)是32,∴原來的兩位數(shù)是23或32,故選AB.【考點】本題考查了一元二次方程的應用,解題的關鍵是能正確用每一數(shù)位上的數(shù)字表示這個兩位數(shù).3、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項D符合題意,故選:ACD.【考點】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關鍵.4、AC【解析】【分析】根據(jù)三角形內(nèi)切圓的性質(zhì)逐個判斷可得出答案.【詳解】A、以點B為圓心,以適當長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線,由此可得BP是角平分線,所以射線一定過點O,說法正確,選項符合題意;B、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;C、當是等邊三角形時,可以證得D、F、E分別是邊的中點,根據(jù)中位線概念可得,選項符合題意;D、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;故選:AC.【考點】本題考查了三角形內(nèi)切圓的特點和性質(zhì),解題的關鍵是能與其它知識聯(lián)系起來,加以證明選項的正確.5、ACD【解析】【分析】根據(jù)圓內(nèi)接四邊形性質(zhì)直接可判斷A選項正確;利用切線的性質(zhì)可判斷B選項錯誤;根據(jù)正多邊形中心角的定義和多邊形外角和可對判斷C選項正確;根據(jù)切線長定理可判斷D選項正確.【詳解】A.由圓內(nèi)接四邊形定義得:對角互補的四邊形是圓內(nèi)接四邊形,A選項正確;B.圓的切線垂直于過切點的半徑,B選項錯誤;C.正多邊形中心角的度數(shù)等于這個正多邊形一個外角的度數(shù),都等于,C選項正確;D.過圓外一點引的圓的兩條切線,則切線長相等,D選項正確.故選:ACD.【考點】本題考查了正多邊形與圓、切線的性質(zhì)和確定圓的條件,解題關鍵是熟練掌握有關的概念.三、填空題1、(12-x)(8-x)=77【解析】【分析】道路外的四塊土地拼到一起正好構(gòu)成一個矩形,矩形的長和寬分別是(12-x)和(8-x),根據(jù)矩形的面積公式,列出關于道路寬的方程求解.【詳解】道路的寬為x米.依題意得:(12-x)(8-x)=77,故答案為(12-x)(8-x)=77.【考點】本題考查了一元二次方程的應用,關鍵將四個矩形用恰當?shù)姆绞狡闯纱缶匦瘟谐龅攘筷P系.2、【分析】直接利用概率公式進行計算即可.【詳解】解:過年時包了100個餃子,有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是故答案為:【點睛】本題考查的是簡單隨機事件的概率,熟練的利用概率公式進行計算是解本題的關鍵;概率的含義:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.3、2【分析】取AC中點O,由勾股定理的逆定理可知∠ADC=90°,則點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點O,∵,即,∴∠ADC=90°,∴點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點睛】本題主要考查了一點到圓上一點的最短距離,勾股定理的逆定理,勾股定理,解題的關鍵在于確定點D的運動軌跡.4、【解析】【分析】連接BE,根據(jù)正切的定義求出∠A,根據(jù)扇形面積公式、三角形的面積公式計算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點】本題考查的是扇形面積計算、等邊三角形的判定和性質(zhì),掌握扇形面積公式是解題的關鍵.5、【分析】陰影部分的面積等于等邊三角形的面積減去三個扇形面積,而這三個扇形拼起來正好是一個半徑為半圓的面積,即陰影部分面積=等邊三角形面積?半徑為半圓的面積,因此求出半圓面積,連接AD,則可求得AD的長,從而可求得等邊三角形的面積,即可求得陰影部分的面積.【詳解】連接AD,如圖所示則AD⊥BC∵D點是BC的中點∴由勾股定理得∴∵S半圓=∴S陰影=S△ABC?S半圓故答案為:【點睛】本題是求組合圖形的面積,扇形面積及三角形面積的計算.關鍵是把不規(guī)則圖形面積通過割補轉(zhuǎn)化為規(guī)則圖形的面積計算.四、簡答題1、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當時,四邊形PQCD為平行四邊形;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運動的時間為秒.∵t=9>8,∴t=9(舍去),∴當t=2秒時,PQ與⊙O相切.【考點】本題主要考查了切線長定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關鍵在于能夠熟練掌握切線長定理.2、(1);(2)【解析】【分析】(1)首先求出點B、C的坐標,然后利用待定系數(shù)法求出拋物線的解析式;(2)如圖,過點C作直線CD⊥y軸交拋物線于點D,過點D作DE⊥x軸于點E,連接BD,構(gòu)造Rt△DEB,欲求銳角三角函數(shù)定義tan∠BDE=,先求線段BE,DE的長度即可.【詳解】(1)解:∵直線經(jīng)過、兩點,易得點,,代入拋物線中,得解之得∴拋物線的解析式為.(2)解:如圖,過點作直線軸交拋物線于點,過點作軸于點,連接.∵拋物線的對稱軸為,點為,∴點為,從而得,.∵點為∴,在中,,∴.【考點】本題考查了拋物線與x軸的交點坐標,二次函數(shù)的圖象與性質(zhì)、一次函數(shù)的圖象與性質(zhì)以及三角函數(shù)等知識點,解題時,注意輔助線的作法.五、解答題1、(1)3;(2)在運動過程中,點運動的軌跡是以為圓心,為半徑的圓【解析】【分析】(1)利用垂徑定理,然后根據(jù)勾股定理即可求得弦心距OD的長;(2)根據(jù)圓的定義即可確定.【詳解】解:連接,作于.就是圓心到弦的距離.在中,∵∴是弦的中點在中,,,圓心到弦的距離為.由知:是弦的中點中點在運動過程中始終保持∴據(jù)圓的定義,在運動過程中,點運動的軌跡是以為圓心,為半徑的圓.【考點】考查垂徑定理,作出輔助線,構(gòu)造直角三角形是解題的關鍵.2、當t=(在0<t≤1的范圍內(nèi))時,S的最小值為千米【解析】【分析】設兩人均出發(fā)了t時,根據(jù)勾股定理建立甲、乙之間的距離與時間t的函數(shù)關系式,然后求出二次函數(shù)在一定的取值范圍內(nèi)的最值即可得解.【詳解】設兩人均出發(fā)了t時,則此時甲到A地的距離是(4-4t)千米,乙離A地的距離是4t千米,由勾股定理,得甲,乙兩人間的距離為:S=,∴當t=(在0<t≤1的范圍內(nèi))時,S的最小值為千米.【考點】本題考查二次函數(shù)的實際應用,關鍵在于根據(jù)題意寫出二次函數(shù)關系式,再利用求二次函數(shù)的最值方法求最值.3、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠F
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年下半年遂昌縣部分機關事業(yè)單位招聘編外用工備考題庫及一套答案詳解
- 2026年中國物流股份有限公司招聘備考題庫及完整答案詳解1套
- 2026年臨沂高新區(qū)公開招聘工作人員10人備考題庫完整參考答案詳解
- 2026年包頭鋼鐵(集團)有限責任公司招聘備考題庫及答案詳解1套
- 2026年中國船舶重工集團大連船舶工業(yè)有限公司招聘備考題庫及1套完整答案詳解
- 2026年十五冶金建設集團有限公司招聘等你來沖備考題庫及一套完整答案詳解
- 2026年東勝區(qū)消防安全服務中心專職工作人員招聘備考題庫及一套參考答案詳解
- 2026年成都理工大學工程技術(shù)學院招聘備考題庫及參考答案詳解
- 2026年國信證券股份有限公司福建分公司招聘備考題庫及完整答案詳解一套
- 2026年廣東粵運交通股份有限公司招聘備考題庫參考答案詳解
- 河道工程測量施工方案
- 2025嵐圖汽車社會招聘參考題庫及答案解析(奪冠)
- 2025河南周口臨港開發(fā)區(qū)事業(yè)單位招才引智4人考試重點題庫及答案解析
- 2025年無人機資格證考試題庫+答案
- 南京工裝合同范本
- 登高作業(yè)監(jiān)理實施細則
- DB42-T 2462-2025 懸索橋索夾螺桿緊固力超聲拉拔法檢測技術(shù)規(guī)程
- 大學生擇業(yè)觀和創(chuàng)業(yè)觀
- 車載光通信技術(shù)發(fā)展及無源網(wǎng)絡應用前景
- 工程倫理-形考任務四(權(quán)重20%)-國開(SX)-參考資料
- 初中書香閱讀社團教案
評論
0/150
提交評論