人教版初一(下冊)期末壓軸題數(shù)學(xué)試卷(二)解析_第1頁
人教版初一(下冊)期末壓軸題數(shù)學(xué)試卷(二)解析_第2頁
人教版初一(下冊)期末壓軸題數(shù)學(xué)試卷(二)解析_第3頁
人教版初一(下冊)期末壓軸題數(shù)學(xué)試卷(二)解析_第4頁
人教版初一(下冊)期末壓軸題數(shù)學(xué)試卷(二)解析_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

一、解答題1.對于平面直角坐標(biāo)系xOy中的圖形G和圖形G上的任意點P(x,y),給出如下定義:將點P(x,y)平移到P'(x+t,y﹣t)稱為將點P進(jìn)行“t型平移”,點P'稱為將點P進(jìn)行“t型平移”的對應(yīng)點;將圖形G上的所有點進(jìn)行“t型平移”稱為將圖形G進(jìn)行“t型平移”.例如,將點P(x,y)平移到P'(x+1,y﹣1)稱為將點P進(jìn)行“l(fā)型平移”,將點P(x,y)平移到P'(x﹣1,y+1)稱為將點P進(jìn)行“﹣l型平移”.已知點A(2,1)和點B(4,1).(1)將點A(2,1)進(jìn)行“l(fā)型平移”后的對應(yīng)點A'的坐標(biāo)為.(2)①將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點是.②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點,則t的取值范圍是.(3)已知點C(6,1),D(8,﹣1),點M是線段CD上的一個動點,將點B進(jìn)行“t型平移”后得到的對應(yīng)點為B',當(dāng)t的取值范圍是時,B'M的最小值保持不變.2.如圖,,直線與、分別交于點、,點在直線上,過點作,垂足為點.(1)如圖1,求證:;(2)若點在線段上(不與、、重合),連接,和的平分線交于點請在圖2中補全圖形,猜想并證明與的數(shù)量關(guān)系;3.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請說明理由;(3)當(dāng)AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關(guān)系.4.已知AB//CD.(1)如圖1,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D;(2)如圖,連接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直線交于點F.①如圖2,當(dāng)點B在點A的左側(cè)時,若∠ABC=50°,∠ADC=60°,求∠BFD的度數(shù).②如圖3,當(dāng)點B在點A的右側(cè)時,設(shè)∠ABC=α,∠ADC=β,請你求出∠BFD的度數(shù).(用含有α,β的式子表示)5.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當(dāng)射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.6.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.7.定義:對任意一個兩位數(shù),如果滿足個位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個兩位數(shù)為“奇異數(shù)”.將一個“奇異數(shù)”的個位數(shù)字與十位數(shù)字對調(diào)后得到一個新的兩位數(shù),把這個新兩位數(shù)與原兩位數(shù)的和與的商記為例如:,對調(diào)個位數(shù)字與十位數(shù)字后得到新兩位數(shù)是,新兩位數(shù)與原兩位數(shù)的和為,和與的商為,所以根據(jù)以上定義,完成下列問題:(1)填空:①下列兩位數(shù):,,中,“奇異數(shù)”有.②計算:..(2)如果一個“奇異數(shù)”的十位數(shù)字是,個位數(shù)字是,且請求出這個“奇異數(shù)”(3)如果一個“奇異數(shù)”的十位數(shù)字是,個位數(shù)字是,且滿足,請直接寫出滿足條件的的值.8.如果有一列數(shù),從這列數(shù)的第2個數(shù)開始,每一個數(shù)與它的前一個數(shù)的比等于同一個非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(GeometricSequences).這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).(1)觀察一個等比列數(shù)1,,…,它的公比q=;如果an(n為正整數(shù))表示這個等比數(shù)列的第n項,那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進(jìn)行:令S=1+2+4+8+16+…+230…①等式兩邊同時乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以請根據(jù)以上的解答過程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數(shù)為q,請用含a1,q,n的代數(shù)式表示an;如果這個常數(shù)q≠1,請用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.9.閱讀下列解題過程:為了求的值,可設(shè),則,所以得,所以;仿照以上方法計算:(1).(2)計算:(3)計算:10.閱讀下面的文字,解答問題.對于實數(shù)a,我們規(guī)定:用符號[a]表示不大于a的最大整數(shù);用{a}表示a減去[a]所得的差.例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法計算:[]={5﹣}=;(2)若[]=1,寫出所有滿足題意的整數(shù)x的值:.(3)已知y0是一個不大于280的非負(fù)數(shù),且滿足{}=0.我們規(guī)定:y1=[],y2=[],y3=[],…,以此類推,直到y(tǒng)n第一次等于1時停止計算.當(dāng)y0是符合條件的所有數(shù)中的最大數(shù)時,此時y0=,n=.11.閱讀材料:求值:,解答:設(shè),將等式兩邊同時乘2得:,將得:,即.請你類比此方法計算:.其中n為正整數(shù)12.給定一個十進(jìn)制下的自然數(shù),對于每個數(shù)位上的數(shù),求出它除以的余數(shù),再把每一個余數(shù)按照原來的數(shù)位順序排列,得到一個新的數(shù),定義這個新數(shù)為原數(shù)的“模二數(shù)”,記為.如.對于“模二數(shù)”的加法規(guī)定如下:將兩數(shù)末位對齊,從右往左依次將相應(yīng)數(shù)位.上的數(shù)分別相加,規(guī)定:與相加得;與相加得與相加得,并向左邊一位進(jìn).如的“模二數(shù)”相加的運算過程如下圖所示.根據(jù)以上材料,解決下列問題:(1)的值為______,的值為_(2)如果兩個自然數(shù)的和的“模二數(shù)”與它們的“模二數(shù)”的和相等,則稱這兩個數(shù)“模二相加不變”.如,因為,所以,即與滿足“模二相加不變”.①判斷這三個數(shù)中哪些與“模二相加不變”,并說明理由;②與“模二相加不變”的兩位數(shù)有______個13.如圖所示,A(1,0),點B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,點C的坐標(biāo)為(﹣3,2).(1)直接寫出點E的坐標(biāo);(2)在四邊形ABCD中,點P從點O出發(fā),沿OB→BC→CD移動,若點P的速度為每秒1個單位長度,運動時間為t秒,請解決以下問題;①當(dāng)t為多少秒時,點P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);②當(dāng)t為多少秒時,三角形PEA的面積為2,求此時P的坐標(biāo)14.綜合與實踐課上,同學(xué)們以“一個直角三角形和兩條平行線”為背景開展數(shù)學(xué)活動,如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學(xué)們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.(3)如圖3,若∠A=30°,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請寫出與的數(shù)量關(guān)系并說明理由.15.如圖,在平面直角坐標(biāo)系中,已知,將線段平移至,點在軸正半軸上,,且.連接,,,.(1)寫出點的坐標(biāo)為;點的坐標(biāo)為;(2)當(dāng)?shù)拿娣e是的面積的3倍時,求點的坐標(biāo);(3)設(shè),,,判斷、、之間的數(shù)量關(guān)系,并說明理由.16.我們定義,關(guān)于同一個未知數(shù)的不等式和,若的解都是的解,則稱與存在“雅含”關(guān)系,且不等式稱為不等式的“子式”.如,,滿足的解都是的解,所以與存在“雅含”關(guān)系,是的“子式”.(1)若關(guān)于的不等式,,請問與是否存在“雅含”關(guān)系,若存在,請說明誰是誰的“子式”;(2)已知關(guān)于的不等式,,若與存在“雅含”關(guān)系,且是的“子式”,求的取值范圍;(3)已知,,,,且為整數(shù),關(guān)于的不等式,,請分析是否存在,使得與存在“雅含”關(guān)系,且是的“子式”,若存在,請求出的值,若不存在,請說明理由.17.在如圖所示的平面直角坐標(biāo)系中,A(1,3),B(3,1),將線段A平移至CD,C(m,-1),D(1,n)(1)m=_____,n=______(2)點P的坐標(biāo)是(c,0)①設(shè)∠ABP=,請寫出∠BPD和∠PDC之間的數(shù)量關(guān)系(用含的式子表示,若有多種數(shù)量關(guān)系,選擇一種加以說明)②當(dāng)三角形PAB的面積不小于3且不大于10,求點p的橫坐標(biāo)C的取值范圍(直接寫出答案即可)18.如圖1,已知,點A(1,a),AH⊥x軸,垂足為H,將線段AO平移至線段BC,點B(b,0),其中點A與點B對應(yīng),點O與點C對應(yīng),a、b滿足.(1)填空:①直接寫出A、B、C三點的坐標(biāo)A(________)、B(________)、C(________);②直接寫出三角形AOH的面積________.(2)如圖1,若點D(m,n)在線段OA上,證明:4m=n.(3)如圖2,連OC,動點P從點B開始在x軸上以每秒2個單位的速度向左運動,同時點Q從點O開始在y軸上以每秒1個單位的速度向下運動.若經(jīng)過t秒,三角形AOP與三角形COQ的面積相等,試求t的值及點P的坐標(biāo).19.五一節(jié)前,某商店擬購進(jìn)A、B兩種品牌的電風(fēng)扇進(jìn)行銷售,已知購進(jìn)3臺A種品牌電風(fēng)扇所需費用與購進(jìn)2臺B種品牌電風(fēng)扇所需費用相同,購進(jìn)1臺A種品牌電風(fēng)扇與2臺B種品牌電風(fēng)扇共需費用400元.(1)求A、B兩種品牌電風(fēng)扇每臺的進(jìn)價分別是多少元?(2)銷售時,該商店將A種品牌電風(fēng)扇定價為180元/臺,B種品牌電風(fēng)扇定價為250元/臺,商店擬用1000元購進(jìn)這兩種風(fēng)扇(1000元剛好全部用完),為能在銷售完這兩種電風(fēng)扇后獲得最大的利潤,該商店應(yīng)采用哪種進(jìn)貨方案?20.題目:滿足方程組的x與y的值的和是2,求k的值.按照常規(guī)方法,順著題目思路解關(guān)于x,y的二元一次方程組,分別求出xy的值(含有字母k),再由x+y=2,構(gòu)造關(guān)于k的方程求解,從而得出k值.(1)某數(shù)學(xué)興趣小組對本題的解法又進(jìn)行了探究利用整體思想,對于方程組中每個方程變形得到“x+y”這個整體,或者對方程組的兩個方程進(jìn)行加減變形得到“x+y”整體值,從而求出k值請你運用這種整體思想的方法,完成題目的解答過程.(2)小勇同學(xué)的解答是:觀察方程①,令3x=k,5y=1解得y=,3x+y=2,∴x=∴k=3×=把x=,y=代入方程②得k=﹣所以k的值為或﹣.請診斷分析并評價“小勇同學(xué)的解答”.21.在平面直角坐標(biāo)系中,點、在坐標(biāo)軸上,其中、滿足.(1)求、兩點的坐標(biāo);(2)將線段平移到,點的對應(yīng)點為,如圖1所示,若三角形的面積為,求點的坐標(biāo);(3)平移線段到,若點、也在坐標(biāo)軸上,如圖2所示.為線段上的一動點(不與、重合),連接、平分,.求證:.22.新定義,若關(guān)于,的二元一次方程組①的解是,關(guān)于,的二元一次方程組②的解是,且滿足,,則稱方程組②的解是方程組①的模糊解.關(guān)于,的二元一次方程組的解是方程組的模糊解,則的取值范圍是________.23.已知AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.(1)如圖1,過點B作BD⊥AM于點D,∠BAD與∠C有何數(shù)量關(guān)系,并說明理由;(2)如圖2,在(1)問的條件下,點E,F(xiàn)在DM上,連接BE,BF,CF,若BF平分∠DBC,BE平分∠ABD,∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠ABE的度數(shù).24.在平面直角坐標(biāo)系中,點,點,點.(1)的面積為______;(2)已知點,,那么四邊形的面積為______.(3)奧地利數(shù)學(xué)家皮克發(fā)現(xiàn)了一類快速求解格點多邊形的方法,被稱為皮克定理:如果用m表示格點多邊形內(nèi)的格點數(shù),n表示格點多邊形邊上的格點數(shù),那么格點多邊形的面積S和m與n之間滿足一種數(shù)量關(guān)系.例如剛剛求解的幾個多邊形面積中,我們可以得到如表中信息:形內(nèi)格點數(shù)m邊界格點數(shù)n格點多邊形面積S611四邊形811五邊形208根據(jù)上述的例子,猜測皮克公式為______(用m,n表示),試計算圖②中六邊形的面積為______(本大題無需寫出解題過程,寫出正確答案即可).25.某市出租車的起步價是7元(起步價是指不超過行程的出租車價格),超過3km行程后,其中除的行程按起步價計費外,超過部分按每千米1.6元計費(不足按計算).如果僅去程乘出租車而回程時不乘坐此車,并且去程超過,那么顧客還需付回程的空駛費,超過部分按每千米0.8元計算空駛費(即超過部分實際按每千米2.4元計費).如果往返都乘同一出租車并且中間等候時間不超過3分鐘,則不收取空駛費而加收1.6元等候費.現(xiàn)設(shè)小文等4人從市中心A處到相距()的B處辦事,在B處停留的時間在3分鐘以內(nèi),然后返回A處.現(xiàn)在有兩種往返方案:方案一:去時4人同乘一輛出租車,返回都乘公交車(公交車票為每人2元);方案二:4人乘同一輛出租車往返.問選擇哪種計費方式更省錢?(寫出過程)26.如圖所示,在平面直角坐標(biāo)系中,點A,,的坐標(biāo)為,,,其中,,滿足,.(1)求,,的值;(2)若在軸上,且,求點坐標(biāo);(3)如果在第二象限內(nèi)有一點,在什么取值范圍時,的面積不大于的面積?求出在符合條件下,面積最大值時點的坐標(biāo).27.請閱讀求絕對值不等式和的解的過程.對于絕對值不等式,從圖1的數(shù)軸上看:大于而小于的數(shù)的絕對值小于,所以的解為;對于絕對值不等式,從圖2的數(shù)軸上看:小于或大于的數(shù)的絕對值大于,所以的解為或.(1)求絕對值不等式的解(2)已知絕對值不等式的解為,求的值(3)已知關(guān)于,的二元一次方程組的解滿足,其中是負(fù)整數(shù),求的值.28.中國傳統(tǒng)節(jié)日“端午節(jié)”期間,某商場開展了“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌的粽子進(jìn)行了打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分別為多少元?(2)在商場讓利促銷活動期間,某敬老院準(zhǔn)備購買甲、乙兩種品牌粽子共40盒,總費用不超過2300元,問敬老院最多可購買多少盒乙品牌粽子?29.某電器超市銷售每臺進(jìn)價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:(進(jìn)價、售價均保持不變,利潤=銷售收入-進(jìn)貨成本)(1)求A、B兩種型號的電風(fēng)扇的銷售單價;(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.30.如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)分別為(1,0)、(-2,0),現(xiàn)同時將點分別向上平移2個單位,再向左平移1個單位,分別得到點的對應(yīng)點,連接、、.(1)若在軸上存在點,連接,使S△ABM=S□ABDC,求出點的坐標(biāo);(2)若點在線段上運動,連接,求S=S△PCD+S△POB的取值范圍;(3)若在直線上運動,請直接寫出的數(shù)量關(guān)系.【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據(jù)“l(fā)型平移”的定義解決問題即可.(2)①畫出線段A1B1即可判斷.②根據(jù)定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時,B'M的最小值保持不變,最小值為.【詳解】(1)將點A(2,1)進(jìn)行“l(fā)型平移”后的對應(yīng)點A'的坐標(biāo)為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點是P1,故答案為:P1;②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點,則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時,B'M的最小值保持不變,最小值為,此時1≤t≤3.故答案為:1≤t≤3.【點睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識,解題的關(guān)鍵理解題意,靈活運用所學(xué)知識解決問題,學(xué)會利用圖象法解決問題,屬于中考創(chuàng)新題型.2.(1)證明見解析;(2)補圖見解析;當(dāng)點在上時,;當(dāng)點在上時,.【分析】(1)過點作,根據(jù)平行線的性質(zhì)即可求解;(2)分兩種情況:當(dāng)點在上,當(dāng)點在上,再過點作即可求解.【詳解】(1)證明:如圖,過點作,∴,∵,∴.∴.∵,∴,∴.(2)補全圖形如圖2、圖3,猜想:或.證明:過點作.∴.∵,∴∴,∴.∵平分,∴.如圖3,當(dāng)點在上時,∵平分,∴,∵,∴,即.如圖2,當(dāng)點在上時,∵平分,∴.∴.即.【點睛】本題考查了平行線的基本性質(zhì)、角平分線的基本性質(zhì)及角的運算,解題的關(guān)鍵是準(zhǔn)確作出平行線,找出角與角之間的數(shù)量關(guān)系.3.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.4.(1)見解析;(2)55°;(3)【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖2,過點作,當(dāng)點在點的左側(cè)時,根據(jù),,根據(jù)平行線的性質(zhì)及角平分線的定義即可求的度數(shù);②如圖3,過點作,當(dāng)點在點的右側(cè)時,,,根據(jù)平行線的性質(zhì)及角平分線的定義即可求出的度數(shù).【詳解】解:(1)如圖1,過點作,則有,,,,;(2)①如圖2,過點作,有.,...即,平分,平分,,,.答:的度數(shù)為;②如圖3,過點作,有.,,...即,平分,平分,,,.答:的度數(shù)為.【點睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).5.(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時,②當(dāng)15<t≤30時,③當(dāng)30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運用方程思想解決幾何問題.6.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點M作EF∥AB,過點N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯角相等,兩直線平行).∴AB//CD.(2)過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點M作EF∥AB,過點N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過E點作AB(或CD)的平行線,把復(fù)雜的圖形化歸為基本圖形.7.(1)①,②,;(2);(3)【分析】(1)①由“奇異數(shù)”的定義可得;②根據(jù)定義計算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根據(jù)題意可列出等式,可求出x、y的值,即可求的值.【詳解】解:(1)①∵對任意一個兩位數(shù)a,如果a滿足個位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個兩位數(shù)為“奇異數(shù)”.∴“奇異數(shù)”為21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根據(jù)題意有∵∴∴∵x、y為正數(shù),且x≠y∴x=6,y=5∴a=6×10+5=65故答案為:(1)①,②,;(2);(3)【點睛】本題考查了新定義下的實數(shù)運算,能理解“奇異數(shù)”定義是本題的關(guān)鍵.8.(1),,;(2);(3)【分析】(1)÷1即可求出q,根據(jù)已知數(shù)的特點求出a18和an即可;(2)根據(jù)已知先求出3S,再相減,即可得出答案;(3)根據(jù)(1)(2)的結(jié)果得出規(guī)律即可.【詳解】解:(1)÷1=,a18=1×()17=,an=1×()n﹣1=,故答案為:,,;(2)設(shè)S=3+32+33+…+323,則3S=32+33+…+323+324,∴2S=324﹣3,∴S=(3)an=a1?qn﹣1,a1+a2+a3+…+an=.【點睛】本題考查了整式的混合運算的應(yīng)用,主要考查學(xué)生的理解能力和閱讀能力,題目是一道比較好的題目,有一定的難度.9.(1);(2);(3).【分析】仿照閱讀材料中的方法求出所求即可.【詳解】解:(1)根據(jù)得:(2)設(shè),則,∴,∴即:(3)設(shè),則,∴,∴即:同理可求?∵【點睛】此題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解本題的關(guān)鍵.10.(1)2;3﹣;(2)1、2、3;(3)256,4【分析】(1)依照定義進(jìn)行計算即可;(2)由題可知,,則可得滿足題意的整數(shù)的的值為1、2、3;(3)由,可知,是某個整數(shù)的平方,又是符合條件的所有數(shù)中最大的數(shù),則,再依次進(jìn)行計算.【詳解】解:(1)由定義可得,,,.故答案為:2;.(2),,即,整數(shù)的值為1、2、3.故答案為:1、2、3.(3),即,可設(shè),且是自然數(shù),是符合條件的所有數(shù)中的最大數(shù),,,,,,即.故答案為:256,4.【點睛】本題屬于新定義類問題,主要考查估算無理數(shù)大小,無理數(shù)的整數(shù)部分和小數(shù)部分,理解定義內(nèi)容是解題關(guān)鍵.11.(1);(2).【解析】【分析】設(shè),兩邊乘以2后得到關(guān)系式,與已知等式相減,變形即可求出所求式子的值;同理即可得到所求式子的值.【詳解】解:設(shè),將等式兩邊同時乘2得:,將下式減去上式得:,即,則;設(shè),兩邊同時乘3得:,得:,即,則.【點睛】本題考查了規(guī)律型:數(shù)字的變化類,有理數(shù)的混合運算,解題的關(guān)鍵是明確題意,運用題目中的解題方法,運用類比的數(shù)學(xué)思想解答問題.12.(1)1011,1101;(2)①12,65,97,見解析,②38【分析】(1)根據(jù)“模二數(shù)”的定義計算即可;(2)①根據(jù)“模二數(shù)”和模二相加不變”的定義,分別計算和12+23,65+23,97+23的值,即可得出答案②設(shè)兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,根據(jù)a、b的奇偶性和“模二數(shù)”和模二相加不變”的定義進(jìn)行討論,從而得出與“模二相加不變”的兩位數(shù)的個數(shù)【詳解】解:(1),故答案為:①,,與滿足“模二相加不變”.,,,與不滿足“模二相加不變”.,,,與滿足“模二相加不變”②當(dāng)此兩位數(shù)小于77時,設(shè)兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,;當(dāng)a為偶數(shù),b為偶數(shù)時,∴∴與滿足“模二相加不變”有12個(28、48、68不符合)當(dāng)a為偶數(shù),b為奇數(shù)時,∴∴與不滿足“模二相加不變”.但27、47、67、29、49、69符合共6個當(dāng)a為奇數(shù),b為奇數(shù)時,∴∴與不滿足“模二相加不變”.但17、37、57、19、39、59也不符合當(dāng)a為奇數(shù),b為偶數(shù)時,∴∴與滿足“模二相加不變”有16個,(18、38、58不符合)當(dāng)此兩位數(shù)大于等于77時,符合共有4個綜上所述共有12+6+16+4=38故答案為:38【點睛】本題考查新定義,數(shù)字的變化類,認(rèn)真觀察、仔細(xì)思考,分類討論的數(shù)學(xué)思想是解決這類問題的方法.能夠理解定義是解題的關(guān)鍵.13.(1)(-2,0);(2)①4秒;②(0,)或(-3,)【分析】(1)根據(jù)BC=AE=3,OA=1,推出OE=2,可得結(jié)論.(2)①判斷出PB=CD,即可得出結(jié)論;②根據(jù)△PEA的面積以及AE求出點P到AE的距離,結(jié)合點P的路線可得坐標(biāo).【詳解】解:(1)∵C(-3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE-AO=2,∴E(-2,0);(2)①∵點C的坐標(biāo)為(-3,2)∴BC=3,CD=2,∵點P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);∴點P在線段BC上,∴PB=CD=2,即t=(2+2)÷1=4;∴當(dāng)t=4秒時,點P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);②∵△PEA的面積為2,A(1,0),E(-2,0),∴AE=3,設(shè)點P到AE的距離為h∴,∴h=,即點P到AE的距離為,∴點P的坐標(biāo)為(0,)或(-3,).【點睛】本題考查坐標(biāo)與圖形變化-平移,三角形的面積等知識,解本題的關(guān)鍵是由線段和部分點的坐標(biāo),得出其它點的坐標(biāo).14.(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進(jìn)而得出結(jié)論;(3)過點C

作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過點B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過點C

作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.15.(1),;(2)點D的坐標(biāo)為或;(3)之間的數(shù)量關(guān)系,或,理由見解析.【分析】(1)由二次根式成立的條件可得a和b的值,由平移的性質(zhì)確定BC∥OA,且BC=OA,可得結(jié)論;(2)分點D在線段OA和在OA延長線兩種情況進(jìn)行計算;(3)分點D在線段OA上時,α+β=θ和在OA延長線α-β=θ兩種情況進(jìn)行計算;【詳解】解:(1)∵,∴a=2,b=3,∴點C的坐標(biāo)為(2,3),∵A(4,0),∴OA=BC=4,由平移得:BC∥x軸,∴B(6,3),故答案為:,;(2)設(shè)點D的坐標(biāo)為∵△ODC的面積是△ABD的面積的3倍∴∴①如圖1,當(dāng)點D在線段OA上時,由,得解得∴點D的坐標(biāo)為②如圖2,當(dāng)點D在OA得延長線上時,由,得解得∴點D的坐標(biāo)為綜上,點D的坐標(biāo)為或.(3)①如圖1,當(dāng)點D在線段OA上時,過點D作DE∥AB,與CB交于點E.由平移知OC∥AB,∴DE∥OC∴又∴.②如圖2,當(dāng)點D在OA得延長線上時,過點D作DE∥AB,與CB得延長線交于點E由平移知OC∥AB,∴DE∥OC∴又∴.綜上,之間的數(shù)量關(guān)系,或.【點睛】此題考查四邊形和三角形的綜合題,點的坐標(biāo)和三角形面積的計算方法,平移得性質(zhì),平行線的性質(zhì)和判定,解題的關(guān)鍵是分點D在線段OA上,和OA延長線上兩種情況.16.(1)A與B存在“雅含”關(guān)系,B是A的“子式”;(2);(3)存在,.【分析】(1)根據(jù)“雅含”關(guān)系的定義即可判斷;(2)先求出解集,根據(jù)“雅含”關(guān)系的定義得出,解不等式即可;(3)首先解關(guān)于的方程組即可求得的值,然后根據(jù),,且為整數(shù)即可得到一個關(guān)于的范圍,從而求得的整數(shù)值.【詳解】解:(1)不等式A:x+2>1的解集為,∵∴A與B存在“雅含”關(guān)系,B是A的“子式”;(2)不等式,解得:,不等式:,解得:,∵與存在“雅含”關(guān)系,且是的“子式”,∴,解得:,(3)存在;由解得:,∵,,即:,解得:,∵為整數(shù),∴的值為,解不等式得:,解不等式得:,∵與存在“雅含”關(guān)系,且是的“子式”,∴不等式的解集為:,∴,且,解得:,∴.【點睛】本題考查了不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小無解.17.(1)-1,-3.(2)①當(dāng)點P在直線AB,CD之間時,∠BPD-∠PDC=α.當(dāng)點P在直線CD的下方時,∠BPD+∠PDC=α.當(dāng)點P在直線AB的上方時,∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由題意,線段AB向左平移2個單位,向下平移4個單位得到線段CD,利用平移規(guī)律求解即可.(2)①分三種情形求解,如圖1中,當(dāng)點P在直線AB,CD之間時,∠BPD-∠PDC=α.如圖2中,當(dāng)點P在直線CD的下方時,∠BPD+∠PDC=α.如圖3中,當(dāng)點P在直線AB的上方時,同法可證∠BPD+∠PDC=α.分別利用平行線的性質(zhì)求解即可.②求出點P在直線AB兩側(cè),△PAB的面積分別為3和10時,m的值,即可判斷.【詳解】解:(1)由題意,線段AB向左平移2個單位,向下平移4個單位得到線段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案為:-1,-3.(2)如圖1中,當(dāng)點P在直線AB,CD之間時,∠BPD-∠PDC=α.理由:過點P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD-∠PDC=∠BPD-∠DPE=∠BPE=α.如圖2中,當(dāng)點P在直線CD的下方時,∠BPD+∠PDC=α.理由:過點P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD+∠PDC=∠BPD+∠DPE=∠BPE=α.如圖3中,當(dāng)點P在直線AB的上方時,同法可證∠BPD+∠PDC=α.(3)如圖4中,過點B作BH⊥x軸于H,過點A作AT⊥BH交BH于點T,延長AB交x軸于E.當(dāng)點P在直線AB的下方時,S△PAB=S梯形ATHP-S△ABT-S△PBH=(2+3-m)?3-×2×2-?(3-m)?1=-m+4,當(dāng)△PAB的面積=3時,-m+4=3,解得m=1,當(dāng)△PAB的面積=3時,-m+4=10,解得m=-6,∵△ABT是等腰直角三角形,∴∠ABT=45°=∠HBE,∴BH=EH=1,∴E(4,0),根據(jù)對稱性可知,當(dāng)點P在直線AB的右側(cè)時,當(dāng)△PAB的面積=3時,m=7,當(dāng)△PAB的面積=3時,m=14,觀察圖象可知,-6<m≤1或7≤m<14.【點睛】本題屬于三角形綜合題,考查了三角形的面積,平行線的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用分割法求三角形面積,學(xué)會尋找特殊位置解決問題,屬于中考??碱}型.18.(1)①1,4;3,0;2,﹣4;②2;(2)見解析;(3)t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【分析】(1)①利用非負(fù)數(shù)的性質(zhì)求出a,b的值,可得結(jié)論.②利用三角形面積公式求解即可.(2)連接DH,根據(jù)△ODH的面積+△ADH的面積=△OAH的面積,構(gòu)建關(guān)系式,可得結(jié)論.(3)分兩種情形:①當(dāng)點P在線段OB上,②當(dāng)點P在BO的延長線上時,分別利用面積關(guān)系,構(gòu)建方程,可得結(jié)論.【詳解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2個單位,向下平移4個單位得到B,∴點C是由點O向右平移2個單位,向下平移4個單位得到的,∴C(2,﹣4),故答案為:1,4;3,0;2,﹣4.②△AOH的面積=×1×4=2,故答案為:2.(2)證明:如圖,連接DH.∵△ODH的面積+△ADH的面積=△OAH的面積,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①當(dāng)點P在線段OB上,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此時P(0.6,0).②當(dāng)點P在BO的延長線上時,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此時P(﹣1,0),綜上所述,t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【點睛】本題考查坐標(biāo)與圖形變化-平移,非負(fù)數(shù)的性質(zhì),三角形的面積等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題.19.(1)A、B兩種品牌電風(fēng)扇每臺的進(jìn)價分別是100元、150元;(2)為能在銷售完這兩種電風(fēng)扇后獲得最大的利潤,該商店應(yīng)采用購進(jìn)A種品牌的電風(fēng)扇7臺,購進(jìn)B種品牌的電風(fēng)扇2臺.【分析】(1)設(shè)A種品牌電風(fēng)扇每臺進(jìn)價元,B種品牌電風(fēng)扇每臺進(jìn)價元,根據(jù)題意即可列出關(guān)于x、y的二元一次方程組,解出x、y即可.(2)設(shè)購進(jìn)A品牌電風(fēng)扇臺,B品牌電風(fēng)扇臺,根據(jù)題意可列等式,由a和b都為整數(shù)即可求出a和b的值的幾種可能,然后分別算出每一種情況的利潤進(jìn)行比較即可.【詳解】(1)設(shè)A、B兩種品牌電風(fēng)扇每臺的進(jìn)價分別是x元、y元,由題意得:,解得:,答:A、B兩種品牌電風(fēng)扇每臺的進(jìn)價分別是100元、150元;(2)設(shè)購進(jìn)A種品牌的電風(fēng)扇a臺,購進(jìn)B種品牌的電風(fēng)扇b臺,由題意得:100a+150b=1000,其正整數(shù)解為:或或,當(dāng)a=1,b=6時,利潤=80×1+100×6=680(元),當(dāng)a=4,b=4時,利潤=80×4+100×4=720(元),當(dāng)a=7,b=2時,利潤=80×7+100×2=760(元),∵680<720<760,∴當(dāng)a=7,b=2時,利潤最大,答:為能在銷售完這兩種電風(fēng)扇后獲得最大的利潤,該商店應(yīng)采用購進(jìn)A種品牌的電風(fēng)扇7臺,購進(jìn)B種品牌的電風(fēng)扇2臺.【點睛】本題主要考查了二元一次方程組的實際應(yīng)用,根據(jù)題意找出等量關(guān)系列出等式是解答本題的關(guān)鍵.20.(1);(2)“小勇同學(xué)的解答”錯誤,診斷分析和評價見解析【分析】(1)由兩種方法分別得出2=5-5k,求解即可;(2)從二元一次方程的解和二元一次方程組的解的概念進(jìn)行診斷分析,再從創(chuàng)新的角度進(jìn)行評價即可.【詳解】解:(1)方法一:②×2得:4x+6y=6-4k③,由③-①得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=,方法二:由①-②得:x+2y=3k-2③,由②-③得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=;(2)“小勇同學(xué)的解答”錯誤,理由如下:∵令3x=k,5y=1,求出的x、y的值只是方程①的一個解,而方程①有無數(shù)個解,根據(jù)方程組的解的概念,僅有方程①或方程②的某一個解中的x、y求出的k值不一定適合方程組中的另一個方程;只有當(dāng)方程①、②取公共解時,k和x、y之間對應(yīng)的數(shù)量關(guān)系才能成立,這時,求得的k=才是正確答案;另一方面,小勇的解答雖然錯誤,但他的思維給我們有創(chuàng)新的感覺,也讓我們鞏固加深了對方程組解的概念的連接,同時啟發(fā)我們平時在學(xué)習(xí)中,要善于多角度去探索問題,尋求新穎的解題方法.【點睛】本題考查了二元一次方程組的應(yīng)用、二元一次方程的解、一元一次方程的解法以及整體思想的應(yīng)用等知識;熟練掌握二元一次方程組的解法,由整體思想得出2=5-5k是解題的關(guān)鍵.21.(1),兩點的坐標(biāo)分別為,;(2)點的坐標(biāo)是;(3)證明見解析【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得出二元一次方程組,求解即可;(2)過點B作y軸的平行線分別與過點A,C作x軸的平行線交于點N,點M,過點C作y軸的平行線與過點A作x軸的平行線交于點T,根據(jù)三角形的面積長方形的面積(三角形的面積三角形的面積三角形的面積)列出方程,求解得出點C的坐標(biāo),由平移的規(guī)律可得點D的坐標(biāo);(3)過點作,交軸于點,過點作,交于點,根據(jù)兩直線平行,內(nèi)錯角相等與已知條件得出,同樣可證,由平移的性質(zhì)與平行公理的推論可得,最后根據(jù),通過等量代換進(jìn)行證明.【詳解】解:(1),又∵,,,,即,解方程組得,,兩點的坐標(biāo)分別為,;(2)如圖,過點B作y軸的平行線分別與過點A,C作x軸的平行線交于點N,點M,過點C作y軸的平行線與過點A作x軸的平行線交于點T,∴三角形的面積長方形的面積(三角形的面積三角形的面積三角形的面積),根據(jù)題意得,,化簡,得,解得,,依題意得,,,即點的坐標(biāo)為,依題意可知,點的坐標(biāo)是由點的坐標(biāo)先向左平移個單位長度,再向下平移個單位長度得到的,從而可知,點的坐標(biāo)是由點的坐標(biāo)先向左平移個單位長度,再向下平移個單位長度得到的,∴點的坐標(biāo)是;(3)證明:過點作,交軸于點,如圖所示,則,,,過點作,交于點,如圖所示,則,平分,,,由平移得,,,,,,,.【點睛】本題綜合性較強,考查非負(fù)數(shù)的性質(zhì),解二元一次方程組,平行線的性質(zhì),平移的性質(zhì),坐標(biāo)與圖形的性質(zhì),第(3)題巧作輔助線構(gòu)造平行線是解題的關(guān)鍵.22.【分析】根據(jù)已知條件,先求出兩個方程組的解,再根據(jù)“模糊解”的定義列出不等式組,解得m的取值范圍便可.【詳解】解:解方程組得:,解方程組得:,∵關(guān)于,的二元一次方程組的解是方程組的模糊解,因此有:且,化簡得:,即解得:,故答案為.【點睛】本題主要考查了新定義,二元一次方程組的解,解絕對值不等式,考查了學(xué)生的閱讀理解能力、知識的遷移能力以及計算能力,難度適中.正確理解“模糊解”的定義是解題的關(guān)鍵.23.(1)∠C+∠BAD=90°,理由見解析;(2)9°【分析】(1)先過點B作BG∥DM,根據(jù)同角的余角相等,得出∠ABD=∠CBG,再根據(jù)平行線的性質(zhì),得出∠C=∠CBG,即可得到∠ABD=∠C,可得∠C+∠BAD=90°;(2)先過點B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,再設(shè)∠DBE=α,∠ABF=β,根據(jù)∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=9°.【詳解】解:(1)如圖2,過點B作BG∥DM,∵BD⊥AM,∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C,∴∠C+∠BAD=90°;(2)如圖3,過點B作BG∥DM,BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(1)可得∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=5∠DBE=5α,∴∠AFC=5α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②聯(lián)立方程組,解得α=9°,∴∠ABE=9°.【點睛】本題主要考查了平行線的性質(zhì)的運用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯角,運用等角的余角(補角)相等進(jìn)行推導(dǎo).余角和補角計算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時注意方程思想的運用.24.(1)10.5;(2)12.5;(3)10.5,12.5,23;;30【分析】(1)畫出圖形,根據(jù)三角形的面積公式求解;(2)畫出圖形,利用割補法求解;(3)設(shè)S=am+bn+c,其中a,b,c為常數(shù),根據(jù)表中數(shù)據(jù)列方程組求出a,b,c,然后根據(jù)公式即可求出六邊形的面積.【詳解】(1)如圖1,的底為7,高為3,所以面積為,故答案為:10.5;(2)如圖2,,故答案為:12.5;(3)由(1)、(2)可填表格如下:形內(nèi)格點數(shù)m邊界格點數(shù)n格點多邊形面積S61110.5四邊形81112.5五邊形20823設(shè)S=am+bn+c,其中a,b為常數(shù),由題意得,解得,∴皮克公式為,∵六邊形中,m=27,n=8,∴六邊形的面積為=30.【點睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,三元一次方程組的應(yīng)用等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題.25.當(dāng)x小于5時,方案二省錢;當(dāng)x=5時,兩種方案費用相同;當(dāng)x大于5且不大于12時時,方案一省錢【分析】先根據(jù)題意列出方案一的費用:起步價+超過3km的km數(shù)×1.6元+回程的空駛費+乘公交的費用,再求出方案二的費用:起步價+超過3km的km數(shù)×1.6元+返回時的費用1.6x+1.6元的等候費,最后分三種情況比較兩個式子的大?。驹斀狻糠桨敢坏馁M用:7+(x-3)×1.6+0.8(x-3)+4×2=7+1.6x-4.8+0.8x-2.4+8=7.8+2.4x,方案二的費用:7+(x-3)×1.6+1.6x+1.6=7+1.6x-4.8+1.6x+1.6=3.8+3.2x,①費用相同時x的值7.8+2.4x=3.8+3.2x,解得x=5,所以當(dāng)x=5km時費用相同;②方案一費用高時x的值7.8+2.4x>3.8+3.2x,解得x<5,所以當(dāng)x<5km方案二省錢;③方案二費用高時x的值7.8+2.4x<3.8+3.2x,解得x>5,所以當(dāng)x>5km方案一省錢.【點睛】此題考查了應(yīng)用類問題,解答本題的關(guān)鍵是根據(jù)題目所示的收費標(biāo)準(zhǔn),列出x的關(guān)系式,再比較.26.(1),,;(2)或;(3)的范圍;的坐標(biāo)是.【分析】(1)根據(jù)乘方、算術(shù)平方根的性質(zhì),通過列二元一次方程組并求解,得a和b的值;根據(jù)絕對值的性質(zhì),列一元一次方程并求解,從而得到答案;(2)設(shè),根據(jù)題意列方程,結(jié)合絕對值的性質(zhì)求解,得的值;再根據(jù)坐標(biāo)的性質(zhì)分析,即可得到答案(3)在第二象限以及的面積不大于的面積,通過列一元一次不等式并求解,即可得到m的范圍,再根據(jù)的變化規(guī)律計算,即可得到答案.【詳解】(1)∵,∴解得:∵∴∴;(2)根據(jù)題意,設(shè)∵∴∴∴∴點坐標(biāo)為或;(3)∵在第二象限∴∴∵、的橫坐標(biāo)相同,∴軸∵∴∵點在第二象限∴∴∴的范圍為∵當(dāng)時,隨m的增大而減小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論