版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省汝州市中考數(shù)學(xué)考試綜合練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,為正六邊形邊上一動點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運(yùn)動,運(yùn)動到點(diǎn)停止.設(shè)點(diǎn)的運(yùn)動時間為,以點(diǎn)、、為頂點(diǎn)的三角形的面積是,則下列圖像能大致反映與的函數(shù)關(guān)系的是()A. B.C. D.2、在平面直角坐標(biāo)系中,已知點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,則的值為()A.4 B.-4 C.-2 D.23、一元二次方程x2-3x+1=0的根的情況是(
).A.沒有實數(shù)根 B.有兩個相等的實數(shù)根C.只有一個實數(shù)根 D.有兩個不相等的實數(shù)根4、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°5、在圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°二、多選題(5小題,每小題3分,共計15分)1、下列方程一定不是一元二次方程的是(
)A. B.C. D.2、下列說法中,不正確的是(
)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經(jīng)過這條弦所在圓的圓心D.在一個圓內(nèi)平分一條弧和平分它所對的弦的直線必經(jīng)過這個圓的圓心3、在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖象不可能是()A. B.C. D.4、在中,,,且關(guān)于x的方程有兩個相等的實數(shù)根,以下結(jié)論正確的是(
)A.AC邊上的中線長為1 B.AC邊上的高為C.BC邊上的中線長為 D.外接圓的半徑是25、下列四個說法中,不正確的是(
)A.一元二次方程有實數(shù)根B.一元二次方程有實數(shù)根C.一元二次方程有實數(shù)根D.一元二次方程x2+4x+5=a(a≥1)有實數(shù)根第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、你知道嗎,對于一元二次方程,我國古代數(shù)學(xué)家還研究過其幾何解法呢!以方程即為例加以說明.?dāng)?shù)學(xué)家趙爽(公元3~4世紀(jì))在其所著的《勾股圓方圖注》中記載的方法是:構(gòu)造圖(如下面左圖)中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.那么在下面右邊三個構(gòu)圖(矩形的頂點(diǎn)均落在邊長為1的小正方形網(wǎng)格格點(diǎn)上)中,能夠說明方程的正確構(gòu)圖是_____.(只填序號)2、如圖,是的內(nèi)接正三角形,點(diǎn)是圓心,點(diǎn),分別在邊,上,若,則的度數(shù)是____度.3、如圖,已知是的直徑,且,弦,點(diǎn)是弧上的點(diǎn),連接、,若,則的長為______.4、已知拋物線與x軸的一個交點(diǎn)為,則代數(shù)式的值為______.5、已知一個扇形的半徑是1,圓心角是120°,則這個扇形的面積是___________.四、簡答題(2小題,每小題10分,共計20分)1、如圖,在△ABC中,AB=AC,點(diǎn)P在BC上.(1)求作:△PCD,使點(diǎn)D在AC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)在(1)的條件下,若∠APC=2∠ABC,求證:PD//AB.2、已知有三條長度分別為2cm、4cm、8cm的線段,請再添一條線段.使這四條線段成比例,求所添線段的長度.五、解答題(4小題,每小題10分,共計40分)1、如圖,已知正方形點(diǎn)在邊上,以為邊在左側(cè)作正方形;以為鄰邊作平行四邊形連接.(1)判斷和的數(shù)量及位置關(guān)系,并說明理由;(2)將繞點(diǎn)順時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,和的數(shù)量及位置關(guān)系是否發(fā)生變化?請說明理由.2、如圖,已知AB是的直徑,點(diǎn)D為弦BC中點(diǎn),過點(diǎn)C作切線,交OD延長線于點(diǎn)E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.3、如圖,已知點(diǎn)在上,點(diǎn)在外,求作一個圓,使它經(jīng)過點(diǎn),并且與相切于點(diǎn).(要求寫出作法,不要求證明)4、如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點(diǎn),過點(diǎn)A作軸,做直線AC平行x軸,點(diǎn)D是二次函數(shù)的圖象與x軸的一個公共點(diǎn)(點(diǎn)D與點(diǎn)O不重合).(1)求點(diǎn)D的橫坐標(biāo)(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達(dá)式.(3)在(2)的條件下,如圖2,P為OC的中點(diǎn),在直線AC上取一點(diǎn)M,連接PM,做點(diǎn)C關(guān)于PM的對稱點(diǎn)N,①連接AN,求AN的最小值.②當(dāng)點(diǎn)N落在拋物線的對稱軸上,求直線MN的函數(shù)表達(dá)式.-參考答案-一、單選題1、A【分析】設(shè)正六邊形的邊長為1,當(dāng)在上時,過作于而求解此時的函數(shù)解析式,當(dāng)在上時,延長交于點(diǎn)過作于并求解此時的函數(shù)解析式,當(dāng)在上時,連接并求解此時的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設(shè)正六邊形的邊長為1,當(dāng)在上時,過作于而當(dāng)在上時,延長交于點(diǎn)過作于同理:則為等邊三角形,當(dāng)在上時,連接由正六邊形的性質(zhì)可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點(diǎn)睛】本題考查的是動點(diǎn)問題的函數(shù)圖象,銳角三角函數(shù)的應(yīng)用,正多邊形的性質(zhì),清晰的分類討論是解本題的關(guān)鍵.2、C【分析】根據(jù)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特點(diǎn):兩個點(diǎn)關(guān)于原點(diǎn)對稱時,它們的坐標(biāo)符號相反即可得到答案.【詳解】解:點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,,,.故選:C.【點(diǎn)睛】此題主要考查了原點(diǎn)對稱點(diǎn)的坐標(biāo)特點(diǎn),解題的關(guān)鍵是掌握點(diǎn)的變化規(guī)律.3、D【解析】【分析】根據(jù)一元二次方程判別式的性質(zhì)分析,即可得到答案.【詳解】∵∴x2-3x+1=0有兩個不相等的實數(shù)根故選:D.【考點(diǎn)】本題考查了一元二次方程的知識;解題的關(guān)鍵是熟練掌握一元二次方程判別式的性質(zhì),從而完成求解.4、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點(diǎn)睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對的圓周角等于圓心角的一半.5、C【分析】,,,進(jìn)而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形中對角互補(bǔ).解題的關(guān)鍵在于根據(jù)角度之間的數(shù)量關(guān)系求解.二、多選題1、AB【解析】【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程進(jìn)行分析即可.【詳解】解:A、分母含有未知數(shù),一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數(shù),一定不是一元二次方程,故本選項符合題意;C、當(dāng)a=0時,不是一元二次方程,當(dāng)a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點(diǎn)】本題考查的是一元二次方程的定義,熟知只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程是解答此題的關(guān)鍵.2、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進(jìn)行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應(yīng)該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項說法錯誤,符合題意;C、弦的垂線不一定經(jīng)過這條弦所在的圓心,應(yīng)該是:弦的垂直平分線必經(jīng)過這條弦所在的圓心,選項說法錯誤,符合題意;D、在一個圓內(nèi),平分一條弧和它所對弦的直線必經(jīng)過這個圓的圓心,選項說法正確,不符合題意;故選ABC.【考點(diǎn)】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理及其推論.3、ABD【解析】【分析】首先根據(jù)圖形中給出的一次函數(shù)圖象確定a、b的符號,進(jìn)而運(yùn)用二次函數(shù)的性質(zhì)判斷圖形中給出的二次函數(shù)的圖象是否符合題意,根據(jù)選項逐一討論解析,即可解決問題.【詳解】A、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線來說,對稱軸x=<0,應(yīng)在y軸的左側(cè),圖形錯誤,故符合題意.B、對于直線y=bx+a來說,由圖象可以判斷,a<0,b<0;而對于拋物線來說,圖象應(yīng)開口向下,故不合題意,圖形錯誤,故符合題意.C、對于直線y=bx+a來說,由圖象可以判斷,a<0,b>0;而對于拋物線來說,圖象開口向下,對稱軸x=位于y軸的右側(cè),圖形正確,故不符合題意,D、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線來說,圖象開口向下,a<0,故不合題意,圖形錯誤,故符合題意.故選ABD.【考點(diǎn)】主要考查了一次函數(shù)、二次函數(shù)圖象的性質(zhì)及其應(yīng)用問題;解題的方法是首先根據(jù)其中一次函數(shù)圖象確定a、b的符號,進(jìn)而判斷另一個函數(shù)的圖象是否符合題意;解題的關(guān)鍵是靈活運(yùn)用一次函數(shù)、二次函數(shù)圖象的性質(zhì)來分析、判斷、解答.4、BCD【解析】【分析】由根的判別式求出AC=b=4,由勾股定理的逆定理證出△ABC是直角三角形,再由直角三角形斜邊上的中線性質(zhì)即可得出AC的長,利用等積法求出斜邊上的高,根據(jù)勾股定理求出BC邊上的中線,利用直角三角形外接圓的半徑是斜邊的一半得出外接圓的半徑.【詳解】∵一元二次方程x2-4x+b=0有兩個相等的實數(shù)根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC為直角三角形,∵直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),∴AC邊上的中線長=2,故A錯誤;∵ABBC=ACh∴22=4h∴h=故B正確;BC邊上的中線==故C正確直角三角形外接圓的半徑等于斜邊的一半,所以為2故D正確.故答案為:BCD【考點(diǎn)】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當(dāng)Δ=0,方程有兩個相等的實數(shù)根;還考查了利用勾股定理判定直角三角形及勾股定理的應(yīng)用,并考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)以及三角形的外接圓的性質(zhì).5、ABC【解析】【分析】判斷上述方程的根的情況,只要看根的判別式△的值的符號就可以了.【詳解】解:、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程有實數(shù)根,正確,不符合題意;故選:ABC.【考點(diǎn)】本題考查了一元二次方程根的情況與判別式△的關(guān)系:解題的關(guān)鍵是掌握(1)△方程有兩個不相等的實數(shù)根;(2)△方程有兩個相等的實數(shù)根;(3)△方程沒有實數(shù)根.三、填空題1、②【解析】【分析】仿造案例,構(gòu)造面積是的大正方形,由它的面積為,可求出,此題得解.【詳解】解:即,構(gòu)造如圖②中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.故答案為②.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,仿造案例,構(gòu)造出合適的大正方形是解題的關(guān)鍵.2、120【解析】【分析】本題可通過構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因為等邊三角形ABC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因為OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點(diǎn)】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進(jìn)行轉(zhuǎn)化,構(gòu)造輔助線是本題難點(diǎn),全等以及垂徑定理的應(yīng)用在圓綜合題目極為常見,圓心角、弧、圓周角的關(guān)系需熟練掌握.3、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點(diǎn)】本題考查了圓周角定理及垂徑定理等相關(guān)知識點(diǎn),本題的關(guān)鍵是求出∠COB=60°.4、2019【解析】【分析】先將點(diǎn)(m,0)代入函數(shù)解析式,然后求代數(shù)式的值即可得出結(jié)果.【詳解】解:將(m,0)代入函數(shù)解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案為:2019.【考點(diǎn)】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及求代數(shù)式的值,解題的關(guān)鍵是將點(diǎn)(m,0)代入函數(shù)解析式得到有關(guān)m的代數(shù)式的值.5、【分析】根據(jù)圓心角為的扇形面積是進(jìn)行解答即可得.【詳解】解:這個扇形的面積.故答案是:.【點(diǎn)睛】本題考查了扇形的面積,解題的關(guān)鍵是掌握扇形的面積公式.四、簡答題1、(1)見解析;(2)見解析【解析】【分析】(1)根據(jù)相似三角形的性質(zhì)可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD與AC的交點(diǎn)為D即可;(2)利用外角的性質(zhì)以及(1)中∠CPD=∠BAP可得∠CPD=∠ABC,再根據(jù)平行線的判定即可.【詳解】解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如圖,即為所作圖形,(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP=∠ABC,∴∠BAP=∠CPD=∠ABC,即∠CPD=∠ABC,∴PD∥AB.【考點(diǎn)】本題考查了尺規(guī)作圖,相似三角形的性質(zhì),外角的性質(zhì),難度不大,解題的關(guān)鍵是掌握尺規(guī)作圖的基本作法.2、1或4或16.【解析】【分析】根據(jù)成比例線段的性質(zhì)求解即可.【詳解】解:設(shè)添加的線段長度為x,當(dāng)時,解得:;當(dāng)時,解得:;當(dāng)時,解得:.∴所添線段的長度為1或4或16.【考點(diǎn)】此題考查了線段成比例,解題的關(guān)鍵是熟練掌握線段成比例性質(zhì)并分類討論.五、解答題1、(1);;理由見解析;(2)與的數(shù)量及位置關(guān)系都不變;答案見解析.【解析】【分析】(1)證明,由全等三角形的性質(zhì)得出,,得出,則可得出結(jié)論;(2)證明,由全等三角形的性質(zhì)得出,,由平行線的性質(zhì)證出,則可得出結(jié)論.【詳解】解:(1),.由題意可得,平行四邊形為矩形,,,,,,,,,設(shè)與交于點(diǎn),則,即.(2)與的數(shù)量及位置關(guān)系都不變.如圖,延長到點(diǎn),四邊形為平行四邊形,,,,,,,,,,又,,,,,,,,,即.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),解題的關(guān)鍵是:熟練掌握正方形的性質(zhì).2、(1)見解析(2)見解析【分析】(1)由垂徑定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后說明Rt△CDE≌Rt△BDE,最后運(yùn)用全等三角形的性質(zhì)即可證明;(2)由等腰三角形的性質(zhì)可得∠ECB=∠EBC、∠OCB=∠OBC,再根據(jù)CE是切線得到∠OCE=90°,即∠OCB+∠BCE=90°,進(jìn)而說明BE⊥AB即可證明.(1)證明:∵點(diǎn)D為弦BC中點(diǎn)∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=BD,∠CDE=∠BDE,DE=DE∴Rt△CDE≌Rt△BDE∴EC=EB.(2)證明:∵EC=EB,OC=OB∴∠ECB=∠EBC,∠OCB=∠OBC,∵CE是切線∴∠OCE=90°,即∠OCB+∠BCE=90°∴∠OBC+∠EBC=90°,即BE⊥AB∴BE是的切線.【點(diǎn)睛】本題主要考查了垂徑定理、全等三角形的判定與性質(zhì)、切線的證明、等腰三角形的性質(zhì)等知識點(diǎn),掌握垂徑定理是解答本題的關(guān)鍵.3、見解析【解析】【分析】先確定圓心,再確定圓的半徑,畫圓即可.【詳解】解:如圖,①連接、,②作線段的垂直平分線交的延長線于一點(diǎn),交點(diǎn)即為,③以為圓心,或的長度為半徑作圓,④即為所求.【考點(diǎn)】本題考查了確定圓的條件和相切兩圓的性質(zhì),作圖是難點(diǎn),注:確定圓,即確定圓心和半徑.4、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設(shè)w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點(diǎn)N在以P為圓心,以2為半徑的圓上運(yùn)動,當(dāng)P、N、A同側(cè)且共線時,AN最小,用勾股定理計算即可.②分點(diǎn)M在對稱軸的左側(cè)和右側(cè),兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年遵化市人民法院招錄勞務(wù)派遣審判輔助人員備考題庫及一套完整答案詳解
- 2026年浙江省之江監(jiān)獄招聘備考題庫及參考答案詳解1套
- 網(wǎng)絡(luò)設(shè)備維護(hù)與故障診斷流程
- Zigbee技術(shù)的發(fā)展教學(xué)課件
- 入黨初級考試試題及答案
- x技術(shù)教學(xué)課件
- 2026年汽車行業(yè)智能化創(chuàng)新報告與未來交通體系變革報告
- 2026年制式離婚協(xié)議書民政局備案版
- 2026年醫(yī)療3D打印器官修復(fù)報告
- 安全用藥知識科普
- 器官移植術(shù)后排斥反應(yīng)的風(fēng)險分層管理
- 事業(yè)單位清算及財務(wù)報告編寫范本
- 護(hù)坡綠化勞務(wù)合同范本
- 臨床績效的DRG與CMI雙指標(biāo)調(diào)控
- 2026年湛江日報社公開招聘事業(yè)編制工作人員備考題庫及完整答案詳解
- 2025-2026學(xué)年人教版數(shù)學(xué)三年級上學(xué)期期末仿真模擬試卷一(含答案)
- 2025年涼山教師業(yè)務(wù)素質(zhì)測試題及答案
- 2026年昭通市威信縣公安局第一季度輔警招聘(14人)筆試模擬試題及答案解析
- 氫能技術(shù)研發(fā)協(xié)議
- 2025交管12123學(xué)法減分整套試題帶答案解析(全國適用)
- 經(jīng)皮內(nèi)鏡下胃造瘺術(shù)護(hù)理配合
評論
0/150
提交評論